
HW 1

Question 1: EM for the PANSS data

Load the Surrogate package in R and load the dataset Schizo_PANSS:

library(Surrogate)
data("Schizo_PANSS")

The dataset combines five clinical trials aimed at determining if risperidone decreases the
Positive and Negative Syndrome Score (PANSS) over time compared to a control treatment
for patients with schizophrenia. These are longitudinal trials where patients are assessed at
weeks 1, 2, 4, 6 and 8 after being assigned to a treatment arm.

Each row in the dataset is a different trial participant, and Week1, Week2, Week4, Week6,
Week8 records the change in PANSS from baseline. The variable Treat represents whether
the patient was enrolled in the control (-1) or if the patient was in the risperidone arm (1).

Subset the data to include only Week1, Week4 and Week8, and including only complete cases,
dropouts between week 4 and week 8, and dropouts between weeks 1 and weeks 4.

hw_data <- Schizo_PANSS[,c("Id","Treat","Week1","Week4","Week8")] |>
subset((!is.na(Week1) & !is.na(Week4) & !is.na(Week8))

| (!is.na(Week1) & !is.na(Week4) & is.na(Week8))
| (!is.na(Week1) & is.na(Week4) & is.na(Week8)))

Double-checking we did the subsetting correctly:

gen_miss_patterns <- function(mat) {
patterns <- mat |>
is.na() |>
apply(2,as.integer) |>
apply(1, \(row) {
paste(row,collapse = "_")

})
return(patterns)

1

}
y_data <- hw_data[,c("Week1","Week4","Week8")]
miss_patterns <- gen_miss_patterns(y_data)
tab_miss <- table(miss_patterns)
prop_miss <- prop.table(tab_miss)
prop_miss <- sort(prop_miss,decreasing = TRUE)
barplot(prop_miss, main = "Missingness patterns")

0_0_0 0_0_1 0_1_1

Missingness patterns

0.
0

0.
2

0.
4

0.
6

Of the remaining data, 20% of cases dropped out before the final week, and 15% of cases
dropped out between weeks 1 and 4.

We’re going to fit the following model to this dataset:

𝑦𝑖 ∣ Treat𝑖 ∼ Normal(𝜇 + 𝛽1Treat𝑖 + 𝛽2𝑡 + 𝛽3Treat𝑖𝑡, Σ)
where 𝑡 is the vector 1, 4, 8 indicating at what time points the measurements were taken and
𝜇 is a scalar mean, under the somewhat dubious assumption of ignorable dropout.

In order to do so, we can use an Expectation-Conditional-Maximization algorithm:

1. Initialize with 𝛽(1), Σ(1), and a value 𝜖
2. For 𝑡 = 1, 2, …

a. Compute 𝔼 [𝑦𝑖 ∣ 𝑦𝑖(0), 𝛽(𝑡), Σ(𝑡)] and 𝔼 [𝑦𝑖𝑦𝑇
𝑖 ∣ 𝑦𝑖(0), 𝛽(𝑡), Σ(𝑡)] for all 𝑖

b. Update 𝛽(𝑡) to 𝛽(𝑡+1)

𝛽(𝑡+1) = (∑𝑖 𝑋𝑇
𝑖 (Σ(𝑡))−1𝑋𝑖)

−1 ∑𝑖 𝑋𝑇
𝑖 (Σ(𝑡))−1𝔼 [𝑦𝑖 ∣ 𝑦𝑖(0), 𝛽(𝑡), Σ(𝑡)]

c. Update Σ(𝑡) to Σ(𝑡+1)

2

Σ(𝑡+1) = 1
𝑛 ∑𝑖 𝔼 [(𝑦𝑖 − 𝑋𝑖𝛽(𝑡+1))(𝑦𝑖 − 𝑋𝑖𝛽(𝑡+1))𝑇 ∣ 𝑦𝑖(0), 𝛽(𝑡), Σ(𝑡)]

d. If 𝑄(𝛽(𝑡+1), Σ(𝑡+1) ∣ 𝛽(𝑡), Σ(𝑡))−𝑄(𝛽(𝑡), Σ(𝑡) ∣ 𝛽(𝑡), Σ(𝑡)) < 𝜖, stop, otherwise, return
to step a.

Compute 𝑄(𝛽, Σ ∣ 𝛽(𝑡), Σ(𝑡)) as:

−𝑛
2 log det Σ − 1

2tr ((∑
𝑖

𝔼𝑦𝑖(1)∣𝑦𝑖(0),𝛽𝑡,Σ𝑡 [(𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇]) Σ−1)

Part a

Fit your model to simulated data

set.seed(123)
n <- 1000
p <- 5
K <- 3
X <- list()
beta <- rnorm(p)
L <- matrix(rnorm(K * K),K,K)
Sigma <- L %*% t(L)
phi <- rnorm(p)
y <- list()
d will hold our indicators for which group each patient is in.
d = 1: dropout between weeks 1 and 4
d = 2: dropout between weeks 4 and 8
d = 3: all values are observed
d <- rep(NA_integer_,n)
for (i in 1:n) {

X[[i]] <- matrix(rnorm(p * K),K,p)
y[[i]] <- X[[i]] %*% beta + MASS::mvrnorm(mu = rep(0,K), Sigma = Sigma)
logit_p_m <- X[[i]] %*% phi + c(-2, -1, 1)
p_m <- exp(logit_p_m) / sum(exp(logit_p_m))
d_i <- rmultinom(1, 1, p_m)
d[i] <- which(as.logical(d_i))
y[[i]] <- y[[i]][1:d[i]]

}

For this model, we will assume that even if you drop out, we still observe your covariates for
all time points.

Use the expressions from lecture 11’s notes to derive asymptotic standard errors from the
observed information for the observed data for your estimates for beta.

3

This is fairly involved, so let’s work through the terms we’ll need for the standard errors.
𝐼(𝜃⋆ ∣ 𝑌(0) = ̃𝑦(0)) = −∇2

𝜃𝑄(𝜃 ∣ 𝜃⋆) ∣𝜃=𝜃⋆

− 𝔼𝑌(1)∣𝑌(0)= ̃𝑦(0)
[∇𝜃ℓ𝑌 (𝜃 ∣ 𝑌(1) = 𝑦(1), 𝑌(0) = ̃𝑦(0))∇𝜃ℓ𝑌 (𝜃 ∣ 𝑌(1) = 𝑦(1), 𝑌(0) = ̃𝑦(0))𝑇] ∣𝜃=𝜃⋆

Both terms can be simplified for our model because we’re assuming independence between
observations. When we have independence the expression changes to

𝐼(𝜃⋆ ∣ 𝑌(0) = ̃𝑦(0)) = − ∑𝑖 (𝔼𝑌𝑖(1)∣𝑌𝑖(0)= ̃𝑦𝑖(0),𝜃⋆ [∇2
𝜃ℓ𝑌 (𝜃 ∣ 𝑌𝑖(1) = 𝑦𝑖(1), 𝑌𝑖(0) = ̃𝑦𝑖(0))]) ∣𝜃=𝜃⋆

− ∑𝑖 (𝔼𝑌𝑖(1)∣𝑌𝑖(0)= ̃𝑦𝑖(0),𝜃⋆ [∇𝜃ℓ𝑌 (𝜃 ∣ 𝑌𝑖(1) = 𝑦𝑖(1), 𝑌𝑖(0) = ̃𝑦𝑖(0))∇𝜃ℓ𝑌 (𝜃 ∣ 𝑌𝑖(1) = 𝑦𝑖(1), 𝑌𝑖(0) = ̃𝑦𝑖(0))𝑇]) ∣𝜃=𝜃⋆

− ∑𝑖≠𝑗 𝔼𝑌𝑖(1)∣𝑌𝑖(0)= ̃𝑦𝑖(0),𝜃⋆ [∇𝜃ℓ𝑌 (𝜃 ∣ 𝑌𝑖(1) = 𝑦𝑖(1), 𝑌𝑖(0) = ̃𝑦𝑖(0))] ∣𝜃=𝜃⋆

× 𝔼𝑌𝑗(1)∣𝑌𝑗(0)= ̃𝑦𝑗(0),𝜃⋆ [∇𝜃ℓ𝑌 (𝜃 ∣ 𝑌𝑗(1) = 𝑦𝑗(1), 𝑌𝑗(0) = ̃𝑦𝑗(0))𝑇] ∣𝑇𝜃=𝜃⋆

This means we’ll need three quantities for

Let’s start with the score function of the complete data log-likelihood, or the second expres-
sion above. We know that ℓ𝑌 (𝛽, Σ ∣ 𝑌𝑖(1) = 𝑦𝑖(1), 𝑌𝑖(0) = ̃𝑦𝑖(0)) is:

−1
2 log det Σ − 1

2tr ((𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 Σ−1)

An aside on differentials

We’ll need the differential of ℓ𝑌 . Note that this isn’t the gradient, although the differential
involves gradients. The differential of ℓ𝑌 is a scalar quantity that measures how much ℓ𝑌
changes for small changes in all of the arguments to ℓ𝑌 . In our case, ℓ𝑌 is a function of 𝛽
and Σ.

We write dℓ𝑌 as the differential of ℓ𝑌 , and it is related to the gradients of ℓ𝑌 with respect
to 𝛽 and Σ as:

dℓ𝑌 (𝛽, Σ ∣ 𝑌) = 𝜕ℓ𝑌 (𝛽, Σ ∣ 𝑌)
𝜕𝛽𝑇 d𝛽 + 𝜕ℓ𝑌 (𝛽, Σ ∣ 𝑌)

𝜕vec(Σ)𝑇 dvec(Σ)

where 𝜕ℓ𝑌 (𝛽,Σ∣𝑌)
𝜕𝛽𝑇 is a 1×𝑝 vector and 𝜕ℓ𝑌 (𝛽,Σ∣𝑌)

𝜕vec(Σ)𝑇 is a 1×𝑑2 vector. Each element of 𝜕ℓ𝑌 (𝛽,Σ∣𝑌)
𝜕𝛽𝑇

is the partial derivative of ℓ𝑌 (𝛽, Σ ∣ 𝑌) with respect to one of the 𝛽 coefficients, while an
element of 𝜕ℓ𝑌 (𝛽,Σ∣𝑌)

𝜕vec(Σ)𝑇 is the partial derivative of ℓ𝑌 (𝛽, Σ ∣ 𝑌) with respect to one element of
Σ. These elements are ordered as vec(Σ), which is an operation that takes an 𝑛 × 𝑝 matrix
and generates a length 𝑛𝑝 vector by repeatedly concatenating the columns the matrix into a
single vector. In R, the function as.vector when applied to a matrix is the vec operation.

Defining gradients as vectors makes it easy to keep track of the dimensions of gradients with
respect to matrices. If we wanted to use the matrix of partial derivatives of ℓ𝑌 with respect
to Σ in the expression above, we could instead have written the term:

𝜕ℓ𝑌 (𝛽, Σ ∣ 𝑌)
𝜕vec(Σ)𝑇 dvec(Σ) = tr (𝜕ℓ𝑌 (𝛽, Σ ∣ 𝑌)

𝜕Σ dΣ𝑇)

4

The variables dvec(Σ) represent small deviations in the variables indicated. So d𝛽 is a vector
of small deviations in 𝛽.

You can think of the study of differntials as being related to a one-term Taylor expansion of
a function 𝑓 at a point 𝑥 + 𝑐 about a point 𝑐. In univariate terms:

𝑓(𝑥 + 𝑐) = 𝑓(𝑐) + 𝑓 ′(𝑐)(𝑥 − 𝑐) + 𝑜(|𝑥 − 𝑐|)

In this case, d𝑥 = 𝑥 − 𝑐. Thus, you can think of the differential as being the linear term in
the Taylor expansion, namely 𝑓 ′(𝑐)d𝑥. If you can compute a differential of a function and
isolate vectors 𝐴𝛽 and 𝐴vec(Σ) such that:

dℓ𝑌 (𝛽, Σ ∣ 𝑌) = 𝐴𝑇
𝛽 d𝛽 + 𝐴𝑇

vec(Σ)dvec(Σ)

then you can equate 𝐴𝑇
𝛽 with 𝜕ℓ𝑌 (𝛽,Σ∣𝑌)

𝜕𝛽𝑇 and 𝐴𝑇
vec(Σ) with 𝜕ℓ𝑌 (𝛽,Σ∣𝑌)

𝜕vec(Σ)𝑇 .

The game for using differentials for matrix calculus is to use the rules of differentials, which
mirror the rules for derivatives, and are thus fairly easy to use, and to isolate terms to the
left of d𝛽 and dvec(Σ), and then these will be your gradients.

The two rules for differentials that we will come back to over and over again are the product
rule

d(𝐴𝐵) = d(𝐴)𝐵 + 𝐴d(𝐵)
and the fact that d𝑓(𝑐) = 0 when 𝑐 is not a variable in our set of variables of interest. This
means, for instance, that when computing dℓ𝑌 (𝛽, Σ ∣ 𝑌), any differentials of observations,
𝑦𝑖 are zero.

The idea with second differentials is similar but one tries to isolate matrices 𝐵𝛽, 𝐵vec(Σ),
and 𝐵𝛽,vec(Σ) by applying the differential again to the first differential that gives something
like:

d2ℓ𝑌 (𝛽, Σ ∣ 𝑌) = d𝛽𝑇 𝐵𝛽d𝛽 + dvec(Σ)𝑇 𝐵vec(Σ)dvec(Σ) + 2d𝛽𝑇 𝐵𝛽,vec(Σ)dvec(Σ)

In this case, the Hessian of ℓ𝑌 (𝛽, Σ ∣ 𝑌) has the form:

[𝐵𝛽 𝐵𝛽,vec(Σ)
𝐵𝑇

𝛽,vec(Σ) 𝐵vec(Σ)
]

This can motivated from a two term Taylor expansion for a function 𝑓 at 𝑥 + 𝑐 about the
point 𝑐.

5

Finding the first differential of the ℓ𝑌

Starting with the likelihood:

d (−1
2 log det Σ − 1

2tr ((𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 Σ−1))

= −1
2d log det Σ − d (1

2tr ((𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 Σ−1))

= −1
2d log det Σ − 1

2tr (d ((𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇) Σ−1)

− 1
2tr ((𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇) d (Σ−1)

From lecture 3, we have
d log det Σ = tr(Σ−1dΣ)

Applying this rule and applying the product rule again to the term d ((𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇)
gives:

dℓ𝑌 (𝛽, Σ ∣ 𝑌) = − 1
2tr(Σ−1dΣ) + 1

2tr ((𝑋𝑖d𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 Σ−1)

+ 1
2tr ((𝑦𝑖 − 𝑋𝑖𝛽)(𝑋𝑖d𝛽)𝑇 Σ−1) − 1

2tr ((𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 dΣ−1)

We will repeatedly use the fact that

tr(𝐴𝐵) = tr(𝐵𝐴), tr(𝐴) = tr(𝐴𝑇), tr(𝐴 + 𝐵) = tr(𝐴) + tr(𝐵)

This implies that for 𝐵 = 𝐵𝑇 :

tr(𝐴𝑇 𝐵) = tr((𝐵𝑇 𝐴)𝑇)
= tr(𝐵𝑇 𝐴)
= tr(𝐴𝐵𝑇)
= tr(𝐴𝐵)

We then get

dℓ𝑌 (𝛽, Σ ∣ 𝑌) = − 1
2tr(Σ−1dΣ) + tr ((𝑦𝑖 − 𝑋𝑖𝛽)(𝑋𝑖d𝛽)𝑇 Σ−1)

− 1
2tr ((𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 dΣ−1)

We can further simplify the middle term:

tr ((𝑦𝑖 − 𝑋𝑖𝛽)(𝑋𝑖d𝛽)𝑇 Σ−1) = tr ((𝑦𝑖 − 𝑋𝑖𝛽)d𝛽𝑇 𝑋𝑇
𝑖 Σ−1)

= tr (𝑋𝑇
𝑖 Σ−1(𝑦𝑖 − 𝑋𝑖𝛽)d𝛽𝑇)

6

And we also have that dΣ−1 = Σ−1(dΣ)Σ−1, so the full first differential is:

dℓ𝑌 (𝛽, Σ ∣ 𝑌) = − 1
2tr(Σ−1dΣ) + tr (𝑋𝑇

𝑖 Σ−1(𝑦𝑖 − 𝑋𝑖𝛽)d𝛽𝑇)

− 1
2tr ((𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 Σ−1(dΣ)Σ−1)

We can also combine the first and third terms:

−1
2tr(Σ−1dΣ) − 1

2tr ((𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 Σ−1(dΣ)Σ−1)

= −1
2tr(Σ−1dΣ) − 1

2tr (Σ−1(dΣ)Σ−1(𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇)

= −1
2tr (Σ−1dΣΣ−1 (Σ − (𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇))

This leads to a final first differential of ℓ𝑌 :

dℓ𝑌 (𝛽, Σ ∣ 𝑌) = −1
2tr (dΣΣ−1 (Σ − (𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇) Σ−1)

+ tr (𝑋𝑇
𝑖 Σ−1(𝑦𝑖 − 𝑋𝑖𝛽)d𝛽𝑇)

Applying our rules from above for finding gradients from expressions for differentials, we can
see that there is a term for d𝛽 and a term for dΣ.

Rearranging our expression gives:

dℓ𝑌 (𝛽, Σ ∣ 𝑌) = −1
2vec (Σ−1 (Σ − (𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇) Σ−1)𝑇 dvec(Σ)

+ (𝑋𝑇
𝑖 Σ−1(𝑦𝑖 − 𝑋𝑖𝛽))𝑇 d𝛽

Thus, for a single observation, the gradient with respect to 𝛽 is:

𝑋𝑇
𝑖 Σ−1(𝑦𝑖 − 𝑋𝑖𝛽)

and the gradient with respect to vec(Σ) is:

−1
2vec (Σ−1 (Σ − (𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇) Σ−1)

We’ll also need the expected values of these gradients:

𝔼𝑌𝑖(1)∣𝑌𝑖(0),𝛽⋆,Σ⋆ [𝑋𝑇
𝑖 Σ−1(𝑦𝑖 − 𝑋𝑖𝛽)] = 𝑋𝑇

𝑖 Σ−1(𝔼𝑌𝑖(1)∣𝑌𝑖(0),𝛽⋆,Σ⋆ [𝑦𝑖] − 𝑋𝑖𝛽)
To make the following expressions more compact, we’ll define the conditional expectation
of the outer product of the regression errors, 𝐶(𝑦𝑖, 𝑋𝑖, 𝛽, Σ ∣ 𝛽𝑡, Σ𝑡), evaluated at 𝛽, Σ with
respect to the conditional distribution at 𝛽𝑡, Σ𝑡:

7

𝐶(𝑦𝑖, 𝑋𝑖, 𝛽, Σ ∣ 𝛽𝑡, Σ𝑡) =(Cov𝑦𝑖(1)∣𝑦𝑖(0),𝛽𝑡,Σ𝑡(𝑦𝑖)

+ (𝔼𝑦𝑖(1)∣𝑦𝑖(0),𝛽𝑡,Σ𝑡 [𝑦𝑖] − 𝑋𝑖𝛽)(𝔼𝑦𝑖(1)∣𝑦𝑖(0),𝛽𝑡,Σ𝑡 [𝑦𝑖] − 𝑋𝑖𝛽)𝑇)

Then we can write the expected gradient with respect vec(Σ) as

− 1
2vec (Σ−1 (Σ − 𝔼𝑌𝑖(1)∣𝑌𝑖(0),𝛽⋆,Σ⋆ [(𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇]) Σ−1) =

− 1
2vec (Σ−1 (Σ − 𝐶(𝑦𝑖, 𝑋𝑖, 𝛽, Σ ∣ 𝛽⋆, Σ⋆)) Σ−1)

Now we need to compute the following matrices:

[𝐼 𝑖𝑖
𝛽𝛽 𝐼 𝑖𝑖

𝛽Σ
(𝐼 𝑖𝑖

𝛽Σ)𝑇 𝐼 𝑖𝑖
ΣΣ

] , [𝐼 𝑖𝑗
𝛽𝛽 𝐼 𝑖𝑗

𝛽Σ
(𝐼 𝑖𝑗

𝛽Σ)𝑇 𝐼 𝑖𝑗
ΣΣ

]

Where the 𝑖𝑖 superscript matrices represent the expected cross product of the score for the
𝑖th unit, while the 𝑖𝑗 represents the cross product of the expected scores for the 𝑖th and 𝑗th

units.

Let’s address 𝐼 𝑖𝑖
𝛽,𝛽 first:

𝐼 𝑖𝑖
𝛽𝛽 = 𝔼𝑌(1)∣𝑌(0),𝛽⋆,Σ⋆ [(𝑋𝑇

𝑖 Σ−1(𝑦𝑖 − 𝑋𝑖𝛽)) (𝑋𝑇
𝑖 Σ−1(𝑦𝑖 − 𝑋𝑖𝛽))𝑇]

= 𝑋𝑇
𝑖 Σ−1𝔼𝑌(1)∣𝑌(0),𝛽⋆,Σ⋆ [(𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇] Σ−1𝑋𝑖

= 𝑋𝑇
𝑖 (Σ⋆)−1𝐶(𝑦𝑖, 𝑋𝑖, 𝛽⋆, Σ⋆ ∣ 𝛽⋆, Σ⋆)(Σ⋆)−1𝑋𝑖

𝐼 𝑖𝑗
𝛽𝛽 = 𝑋𝑇

𝑖 Σ−1(𝔼𝑌𝑖(1)∣𝑌𝑖(0),𝛽⋆,Σ⋆ [𝑦𝑖] − 𝑋𝑖𝛽)(𝔼𝑌𝑗(1)∣𝑌𝑗(0),𝛽⋆,Σ⋆ [𝑦𝑗] − 𝑋𝑗𝛽)𝑇 Σ−1𝑋𝑗

𝐼 𝑖𝑖
𝛽Σ = 𝔼𝑌(1)∣𝑌(0),𝛽⋆,Σ⋆ [−1

2 (𝑋𝑇
𝑖 Σ−1(𝑦𝑖 − 𝑋𝑖𝛽)) vec (Σ−1 (Σ − ((𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇)) Σ−1)𝑇]

has two terms:
𝔼𝑌(1)∣𝑌(0),𝛽⋆,Σ⋆ [−1

2 (𝑋𝑇
𝑖 Σ−1(𝑦𝑖 − 𝑋𝑖𝛽)) vec(𝐼𝑑)]

This expression will zero out when summed across the entire dataset because we evaluate
this expression at 𝛽⋆:

𝔼𝑌(1)∣𝑌(0),𝛽⋆,Σ⋆ [−1
2 ∑𝑖 (𝑋𝑇

𝑖 Σ−1(𝑦𝑖 − 𝑋𝑖𝛽⋆)) vec(𝐼𝑑)] = 0

because 𝛽⋆ solves the score equation for the entire dataset.

8

The second expression doesn’t drop out:

𝔼𝑌(1)∣𝑌(0),𝛽⋆,Σ⋆ [1
2𝑋𝑇

𝑖 Σ−1(𝑦𝑖 − 𝑋𝑖𝛽)vec (Σ−1 ((𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇) Σ−1)𝑇]

This can be simplified using the identity:

vec(𝐴𝐵𝐶) = (𝐶𝑇 ⊗ 𝐴)vec(𝐵)
which leads to:

𝐼 𝑖𝑖
𝛽Σ = 1

2𝑋𝑇
𝑖 Σ−1𝔼𝑌(1)∣𝑌(0),𝛽⋆,Σ⋆ [(𝑦𝑖 − 𝑋𝑖𝛽)vec ((𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇)𝑇] Σ−1 ⊗ Σ−1

while the 𝐼 𝑖𝑗
𝛽Σ matrix is:

𝐼 𝑖𝑗
𝛽Σ = 𝑋𝑇

𝑖 Σ−1(𝔼𝑌𝑖(1)∣𝑌𝑖(0),𝛽⋆,Σ⋆ [𝑦𝑖] − 𝑋𝑖𝛽)

× −1
2vec (Σ−1 (Σ − 𝐶(𝑦𝑗, 𝑋𝑗, 𝛽, Σ ∣ 𝛽⋆, Σ⋆)) Σ−1)𝑇

The block matrix on the lower diagonal is:

𝐼ΣΣ =𝔼𝑌(1)∣𝑌(0),𝛽⋆,Σ⋆[1
4vec (Σ−1 (Σ − ((𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇)) Σ−1)

× vec (Σ−1 (Σ − ((𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇)) Σ−1)𝑇]

This simplifies after summing across the 𝑛 samples because the points 𝛽⋆ and Σ⋆ solve the
following equation:

𝔼𝑌(1)∣𝑌(0),𝛽⋆,Σ⋆ [𝑛Σ⋆ − ∑𝑖(𝑦𝑖 − 𝑋𝑖𝛽⋆)(𝑦𝑖 − 𝑋𝑖𝛽⋆)𝑇] = 0

This leaves two terms, the first of which is:

1
4vec (Σ−1(𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 Σ−1) vec (Σ−1(𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 Σ−1)𝑇

and the second of which is: 1
4vec(𝐼𝑑)vec(𝐼𝑑)𝑇

This gives

𝐼ΣΣ = 1
4(Σ⋆)−1 ⊗ (Σ⋆)−1𝐷(Σ⋆)−1 ⊗ (Σ⋆)−1 + 1

4vec(𝐼𝑑)vec(𝐼𝑑)𝑇

where 𝐷 is:

𝐷 = 𝔼𝑌(1)∣𝑌(0),𝛽⋆,Σ⋆ [vec((𝑦𝑖 − 𝑋𝑖𝛽⋆)(𝑦𝑖 − 𝑋𝑖𝛽⋆)𝑇)vec((𝑦𝑖 − 𝑋𝑖𝛽⋆)(𝑦𝑖 − 𝑋𝑖𝛽⋆)𝑇)𝑇]

9

Finally, the matrix

𝐼 𝑖𝑗
ΣΣ = 1

4vec (Σ−1 (Σ − 𝐶(𝑦𝑖, 𝑋𝑖, 𝛽, Σ ∣ 𝛽⋆, Σ⋆)) Σ−1) vec (Σ−1 (Σ − 𝐶(𝑦𝑗, 𝑋𝑗, 𝛽, Σ ∣ 𝛽⋆, Σ⋆)) Σ−1)𝑇

Final expression for score of 𝛽
Given that we will have third and fourth moments of multivariate Gaussians, I’m going to
say that we’ll approximate the standard error by assuming that ∑𝑖 𝐼 𝑖𝑖

𝛽Σ = ∑𝑖≠𝑗 𝐼 𝑖𝑗
𝛽Σ = 0

(which is probably wrong), which would allow us to ignore lower block diagonals involving
higher order moments for the multivariate Gaussian.

∑
𝑖

𝐼 𝑖𝑖
𝛽𝛽 + ∑

𝑖≠𝑗
𝐼 𝑖𝑗

𝛽𝛽 = ∑
𝑖

𝑋𝑇
𝑖 (Σ⋆)−1𝐶(𝑦𝑖, 𝑋𝑖, 𝛽⋆, Σ⋆ ∣ 𝛽⋆, Σ⋆)(Σ⋆)−1𝑋𝑖

+ ∑
𝑖≠𝑗

𝑋𝑇
𝑖 Σ−1(𝔼𝑌𝑖(1)∣𝑌𝑖(0),𝛽⋆,Σ⋆ [𝑦𝑖] − 𝑋𝑖𝛽)(𝔼𝑌𝑗(1)∣𝑌𝑗(0),𝛽⋆,Σ⋆ [𝑦𝑗] − 𝑋𝑗𝛽)𝑇 Σ−1𝑋𝑗

Expression for Hessian

On to the expression for the second derivative of 𝑄(𝜃 ∣ 𝜃⋆) ∣𝜃=𝜃⋆ . We start with an expression
for the first differential from above:

−1
2tr (dΣΣ−1 (𝑛Σ − (∑

𝑖
(𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇)) Σ−1) + tr ((∑

𝑖
𝑋𝑇

𝑖 Σ−1(𝑦𝑖 − 𝑋𝑖𝛽)) d𝛽𝑇)

Now we take the second derivatives:

− 1
2tr (dΣdΣ−1 (𝑛Σ − (∑

𝑖
(𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇)) Σ−1)

− 1
2tr (dΣΣ−1 (𝑛dΣ − d (∑

𝑖
(𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇)) Σ−1)

− 1
2tr (dΣΣ−1 (𝑛Σ − (∑

𝑖
(𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇)) dΣ−1)

+ tr ((∑
𝑖

𝑋𝑇
𝑖 dΣ−1(𝑦𝑖 − 𝑋𝑖𝛽)) d𝛽𝑇)

− tr ((∑
𝑖

𝑋𝑇
𝑖 Σ−1𝑋𝑖d𝛽) d𝛽𝑇)

Before we evaluate these, we can see the first and third expressions will be zero because the
first order conditions at which we’re evaluating 𝑄 will solve:

𝑛Σ⋆ − ∑
𝑖

(𝑦𝑖 − 𝑋𝑖𝛽⋆)(𝑦𝑖 − 𝑋𝑖𝛽⋆)𝑇 = 0

10

The second expression will become:

−1
2tr (dΣΣ−1 (𝑛dΣ + 2 (∑

𝑖
(𝑦𝑖 − 𝑋𝑖𝛽)d𝛽𝑇 𝑋𝑇

𝑖)) Σ−1)

which simplifies to

−𝑛
2 tr (dΣΣ−1dΣ) − tr (∑

𝑖
𝑋𝑇

𝑖 Σ−1dΣΣ−1(𝑦𝑖 − 𝑋𝑖𝛽)d𝛽𝑇)

The fourth line of the second derivative is:

tr ((∑
𝑖

𝑋𝑇
𝑖 Σ−1dΣΣ−1(𝑦𝑖 − 𝑋𝑖𝛽)) d𝛽𝑇)

which cancels with the second term above.

We’re left with the following:

− 𝑛
2 tr (dΣΣ−1dΣΣ−1) − tr (d𝛽𝑇 (∑

𝑖
𝑋𝑇

𝑖 Σ−1𝑋𝑖) d𝛽)

Thus, the Hessian of the 𝑄 function evaluated at Σ⋆, 𝛽⋆ is

[− ∑𝑖 𝑋𝑇
𝑖 (Σ⋆)−1𝑋𝑖 0
0 −𝑛

2 (Σ⋆)−1 ⊗ (Σ⋆)−1]

Final expression for observed information of 𝛽

Assuming that 𝐼𝛽,Σ = 0, we’re left with the final expression for the observed information of
𝛽:

∑
𝑖

𝑋𝑇
𝑖 (Σ⋆)−1𝑋𝑖

− ∑
𝑖

𝑋𝑇
𝑖 (Σ⋆)−1Cov𝑦𝑖(1)∣𝑦𝑖(0),𝛽⋆,Σ⋆(𝑦𝑖)(Σ⋆)−1𝑋𝑖

− ∑
𝑖

𝑋𝑇
𝑖 (Σ⋆)−1𝐶(𝑦𝑖, 𝑋𝑖, 𝛽⋆, Σ⋆ ∣ 𝛽⋆, Σ⋆)(Σ⋆)−1𝑋𝑖

− ∑
𝑖≠𝑗

𝑋𝑇
𝑖 (Σ⋆)−1(𝔼𝑌𝑖(1)∣𝑌𝑖(0),𝛽⋆,Σ⋆ [𝑦𝑖] − 𝑋𝑖𝛽⋆)(𝔼𝑌𝑗(1)∣𝑌𝑗(0),𝛽⋆,Σ⋆ [𝑦𝑗] − 𝑋𝑗𝛽⋆)𝑇 (Σ⋆)−1𝑋𝑗,

11

where

𝐶(𝑦𝑖, 𝑋𝑖, 𝛽⋆, Σ⋆ ∣ 𝛽⋆, Σ⋆) =(Cov𝑦𝑖(1)∣𝑦𝑖(0),𝛽⋆,Σ⋆(𝑦𝑖)

+ (𝔼𝑦𝑖(1)∣𝑦𝑖(0),𝛽⋆,Σ⋆ [𝑦𝑖] − 𝑋𝑖𝛽⋆)(𝔼𝑦𝑖(1)∣𝑦𝑖(0),𝛽⋆,Σ⋆ [𝑦𝑖] − 𝑋𝑖𝛽⋆)𝑇)

Compute marginal asymptotic confidence intervals for each element of beta and test whether
the true values lie in those intervals.

Report how many steps it took for your model to converge.

Part b

Now fit your model to the real data, report the MLEs and the standard errors for your 𝛽
coefficients.

Part c

Instead of ECM, change your algorithm to an EM algorithm which will involve running your
maximization to convergence for each EM step.

1. Initialize with 𝛽(1), Σ(1), and a value 𝜖
2. For 𝑡 = 1, 2, …

a. Compute 𝔼 [𝑦𝑖 ∣ 𝑦𝑖(0), 𝛽(𝑡), Σ(𝑡)] and 𝔼 [𝑦𝑖𝑦𝑇
𝑖 ∣ 𝑦𝑖(0), 𝛽(𝑡), Σ(𝑡)] for all 𝑖

b. For 𝑠 = 1, 2, …
i. At 𝑠 = 1, set 𝛽(𝑠) = 𝛽(𝑡), Σ(𝑠) = Σ(𝑡)

ii. Update 𝛽(𝑠) to 𝛽(𝑠+1)

𝛽(𝑠+1) = (∑𝑖 𝑋𝑇
𝑖 (Σ(𝑠))−1𝑋𝑖)

−1 ∑𝑖 𝑋𝑇
𝑖 (Σ(𝑠))−1𝔼 [𝑦𝑖 ∣ 𝑦𝑖(0), 𝛽(𝑡), Σ(𝑡)]

iii. Update Σ(𝑠) to Σ(𝑠+1)

Σ(𝑠+1) = 1
𝑛 ∑𝑖 𝔼 [(𝑦𝑖 − 𝑋𝑖𝛽(𝑠+1))(𝑦𝑖 − 𝑋𝑖𝛽(𝑠+1))𝑇 ∣ 𝑦𝑖(0), 𝛽(𝑡), Σ(𝑡)]

iv. Iterate until 𝛽(𝑠), Σ(𝑠) reach a stationary point

c. Set 𝛽(𝑡+1) = 𝛽(𝑠), Σ(𝑡+1) = Σ(𝑠)

d. If 𝑄(𝛽(𝑡+1), Σ(𝑡+1) ∣ 𝛽(𝑡), Σ(𝑡))−𝑄(𝛽(𝑡), Σ(𝑡) ∣ 𝛽(𝑡), Σ(𝑡)) < 𝜖, stop, otherwise, return
to step a.

12

Fit this model to your simulated dataset, and report how many steps it took for this EM
algorithm to converge versus the ECM algorithm.

13

	Question 1: EM for the PANSS data
	Part a

	An aside on differentials
	Finding the first differential of the \ell_Y
	Expression for Hessian

	Final expression for observed information of \beta
	Part b
	Part c

