
Missing data lecture 1

Introduction

At first glance the title of our textbook, Statistical Analysis with Missing Data, seems re-
dundant. What is statistics but the study of drawing conclusions from limited data? One of
the most basic applications of statistics is about how to make inferences about a population
quantity from a simple random sample of that population. The measurements from those
who were not sampled are, by definition, missing. Because we have a simple random sample
from our population, however, we can be sure that the sample mean of the measurements
from the sampled units will be an unbiased estimator of the population-level mean. What
if some of the sampled units refuse to participate in the survey? Suppose the survey asks
about income, and some respondents refuse to report income?

Our definition of missing data for this course will condition on the sample drawn; in other
words, we will focus on values that haven’t been recorded for the sample of data we observe.
Suppose we have a sample of 𝑛 units, on which we have 𝐾 measurements, collected into a
𝑛 × 𝐾 matrix 𝑌 with elements 𝑦𝑖𝑗.

Paired with this matrix of measurements is another 𝑛 × 𝐾 matrix 𝑀 with elements 𝑚𝑖𝑗,
called the missingness indicator matrix. This matrix encodes the information about whether
the (𝑖, 𝑗)th element of 𝑌 is missing or not. Let 𝑚𝑖𝑗 = 1 if 𝑦𝑖𝑗 is missing, and 0 if 𝑦𝑖𝑗 is
observed.

Throughout the course we’ll keep in mind that we’re never looking to explicitly fill in the
missing values with a single “best” value. Instead, we’re going to consider the distribution of
possible values that could be filled in and look at how our estimates change for each filled-in
dataset.

Does missingness matter?

The textbook defines missing data roughly as missing values that would be meaningful for
your analysis if it had been observed (Roderick JA Little and Rubin 2019). The word “mean-
ingful” is doing a lot of work here; we’ll need to define meaningful for ourselves. Conceptually,
we need to define why data is missing in the first place. For example, let’s say we’re analyzing
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the results from a longitudinal trial comparing Infliximab for severe Crohn’s disease, which
is an autoinflammatory disease and a category of inflammatory bowel disease (IBD) (note
this is not IBS, or irritable bowel syndrome, which is fairly common), to a new treatment.
The investigators are interested comparing Crohn’s Disease Activity Index (CDAI) between
the two arms, which is a measure of the severity of symptoms in Crohn’s patients. Imagine
two scenarios: one in which an enrolled patient subsequently drops out of the study after
several infusions of the new treatment, and one in which an enrolled patient dies prior to
the end of the study. In the first scenario, it makes sense to consider that patient’s measure
of CDAI to be missing, whereas in the second scenario, it doesn’t make much sense to think
about imputing a CDAI for someone who has died.

Let’s say we’re in the first scenario, and we’re confronted with some proportion of patients
that have dropped out of the study. Dropout is common in longitudinal studies; in one
dataset we’ll encounter later investigating the efficacy of a treatment for schizophrenia, about
37% of patients dropped out by the end of the study (Van Der Elst et al. 2024). The default
way to deal with missing data in R is to use na.omit. This is also known as complete
case analysis (CC analysis). How much would just using the complete cases impact our
inferences?

Being statisticians, we’ll focus on the bias and variance of our estimates. Let’s make things
more concrete. Suppose in our Crohn’s trial the outcome 𝑌𝑖 is the change from baseline
CDAI to CDAI at the final visit. Assume that all participants have an initial CDAI, so 𝑀𝑖
is 1 if the individual dropped out prior the final visit. As for bias, one can show (read: you’ll
show on HW 1) that the following relationship holds:

𝔼 [𝑌 ∣ 1 (𝑀 = 0)] − 𝔼 [𝑌 ] = Cov(𝑌 ,1 (𝑀 = 0))
𝔼 [1 (𝑀 = 0)]

We can bound the magnitude of this expression by using Cauchy-Schwarz:

|𝔼 [𝑌 ∣ 1 (𝑀 = 0)] − 𝔼 [𝑌 ]| ≤ SD(𝑌 )SD(1 (𝑀 = 0))
𝔼 [1 (𝑀 = 0)]

which simplifies to

|𝔼 [𝑌 ∣ 1 (𝑀 = 0)] − 𝔼 [𝑌 ]| ≤ √𝔼 [1 (𝑀 = 1)]
𝔼 [1 (𝑀 = 0)]SD(𝑌 )

This makes sense; for a given proportion of missing values, the larger the variance of 𝑌 the
larger the potential bias will be by excluding some of them.

This standard deviation is of course not estimable because we don’t have the missing values
of 𝑌 , but for variables with bounded support 𝑌 ∈ [𝑎, 𝑏], we can get a further upper bound
on the standard deviation using Popoviciu’s inequality:

Var(𝑌 ) ≤ (𝑏 − 𝑎)2

4
In the next code cell, I’ve written an expression for the upper bound of CDAI.
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upper_bound_CDAI <-
7 * 20 * 2 +
1 * 30 +
7 * 3 * 5 +
7 * 4 * 7 +
6 * 20 +
5 * 10 +
(42 - 3) * 6 +
50

The upper bound is approximately 1100 (see (Best 2006) for more details, the only value
that may not have a hard upper bound is the number of stools per day, which I’ve set to 20
above, but may be higher)

This is useful in our hypothetical example because the CDAI scale runs from [0, 1100]

|𝔼 [𝑌 ∣ 1 (𝑀 = 0)] − 𝔼 [𝑌 ]| ≤ √𝔼 [1 (𝑀 = 1)]
𝔼 [1 (𝑀 = 0)] × 550

0.0 0.1 0.2 0.3 0.4 0.5

0
20

0
40

0

Impact of missing observations

Proportion of cases missing

U
pp

er
 b

ou
nd

 o
n 

ab
so

lu
te

 b
ia

s

While these are worst-case bounds, this shows that even small proportions of missing values
can impact inferences if the missingness is correlated with the outcome value.

There is also the variance to consider. Even if the covariance between the missing values is
zero, we will lose efficiency by dropping observations that have missing values. In the case
where our estimator is a sample mean, and there are 𝑛 units with 𝑚 missing values, the
variance of the CC estimator will be larger by 1 + 𝑚

𝑛−𝑚 .

Thus, in many cases, even if there are only small proportions of missing values, it can make
sense to use partial information from incomplete cases to improve our estimators.
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Patterns and mechanisms

Much of what we’ll study in our course relates to missingness patterns and missingness
mechanisms. The former concerns the marginal distribution of 𝑀 , while the latter concerns
the conditional distribution of 𝑀 ∣ 𝑌 .

Missingness patterns

Consider three variables, 𝑌1, 𝑌2, 𝑌3 that we’ve measured on a sample of 𝑛 participants. Each
variable has an associated binary vector: 𝑀1, 𝑀2, 𝑀3. Missingness patterns refer to the
observed sample space for the vectors [𝑚𝑖1, 𝑚𝑖2, 𝑚𝑖3]. The simplest missingness pattern is
where only one of the variables is subject to missingness:

[𝑚𝑖1, 𝑚𝑖2, 𝑚𝑖3] ∈ {[0, 0, 0], [0, 0, 1]}.

This is shown in Figure 1.
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Figure 1: Univariate missingness pattern (Credit goes in part to ChatGPT who wrote the
initial version of this plot)

We could also have multivariate missingness with only two missingness patterns

[𝑚𝑖1, 𝑚𝑖2, 𝑚𝑖3] ∈ {[0, 0, 0], [0, 1, 1]}

which is shown in Figure 2:

We could have something called monotone missingness, where we can order the missingness
matrix such that if 𝑀𝑖2 = 1 then so is 𝑀𝑖3 = 1:

[𝑚𝑖1, 𝑚𝑖2, 𝑚𝑖3] ∈ {[0, 0, 0], [0, 1, 1], [0, 0, 1]}

The least restricted missingness pattern is called a general pattern. This would be a case
where there is no special structure. Of course, for 𝑝 variables each subject to missingness,
the general missingness has a sample space of size 2𝑝
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Figure 2: Multivariate missingness pattern
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Figure 3: Monotone missingness pattern

If we consider that only 𝑌2, 𝑌3 are subject to missingness, then we have the following, depicted
in :

[𝑚𝑖1, 𝑚𝑖2, 𝑚𝑖3] ∈ {[0, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 1]}
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Figure 4: General missingness pattern for two variables

Not surprisingly, the general missingness pattern is the most realistic. You might imagine
these patterns occurring during a survey. The pattern [0, 1, 1] represents unit nonresponse
(where a person who is contacted declines to participate in the survey), while [0, 1, 0], [0, 0, 1]
would be item nonresponse.
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The reason that categorizing patterns of missingness is useful is because it can suggest
different methods for dealing with missing data. It’s also something that is observable;
missing values are not observable, but the patterns are. Thus, in the survey unit and item
nonresponse, we might consider different strategies for dealing with unit nonresponse and
item nonresponse.

Missingness mechanisms

The most important paper in missing data was published by Don Rubin in 1976 Donald B.
Rubin (1976). Somewhat surprisingly to me, this paper was rejected by many stats journals.
Rod Little says that he was assigned to review the paper as a graduate student when it was
submitted to Biometrika, and he was convinced the paper was wrong after writing a long
review. Luckily Little was overridden by his advisor, David Cox, who thought the paper was
right, and decided to accept the paper.

The paper was important because it formalized methods of modeling missingness indicators,
or the 𝑀 matrix from above. Prior to this paper, the 𝑀 matrix was not considered an
outcome that could be modeled. Rubin’s paper instead categorized 𝑀 as a random variable,
and determined how the conditional distribution 𝑀 ∣ 𝑌 impacted inferences using only the
observed values of 𝑌 .

The various ways in which 𝑀 can depend on 𝑌 is really an investigation of why a value
is missing. Is a survey respondent unwilling to report their income because is high? Did
the patient drop out of the study because of side-effects of a drug, or because the drug
exacerbated their condition? Did a database error lead to the random dropping of records?

The crux of missing data analysis hinges in what we’re willing to believe about why data are
missing. These beliefs aren’t typically testable, unless we have designed our study to have
missingness1.

Again, let 𝑀 be the matrix with (𝑖, 𝑗)th entry 𝑚𝑖𝑗. Further, let 𝑚𝑖 be the 𝑖th row of 𝑀 . Let
𝑌 , 𝑦𝑖𝑗 and 𝑦𝑖 be similarly defined. We assume for simplicity (and for much of the book) that
(𝑚𝑖, 𝑦𝑖) are independent between rows.

To put a finer point on it, there are generally three categories of missingness mechanisms.
They each relate to the distribution:

𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦𝑖, 𝜙),

where 𝜙 are the parameters that govern the missingness mechanism.

It will be useful in the next subsections to define the following partitions of 𝑦𝑖: Let

𝑦(0)𝑖 = (𝑦𝑖𝑗 ∶ 𝑚𝑖𝑗 = 0)
1One way that can happen is in a univariate missingness setting where 𝑌3 respresents a hard-to-measure

quantity (say number of REM cycles per night) and 𝑌1, 𝑌2 are proxies for this quantity. If we randomly
select a subset of our participants in which to measure 𝑌3 then we know that missingness 𝑀 is not
related to 𝑌 (assuming that none of our selected participants refuse to participate!).
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be the vector of components of 𝑦𝑖 that are observed for unit 𝑖 and let

𝑦(1)𝑖 = (𝑦𝑖𝑗 ∶ 𝑚𝑖𝑗 = 1)

denote the vector of 𝑦𝑖 components that are missing for 𝑦𝑖.

We can see that 𝑦(0)𝑖, 𝑦(1)𝑖 depend on 𝑚𝑖.

Missing completely at random (MCAR)

The simplest mechanism is called missing-completely-at-random (MCAR). This is where the
missingness is unrelated to the outcome. Data are said to MCAR if the following holds for
all 𝑖, 𝑦𝑖, 𝑦⋆

𝑖 , and 𝜙:
𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦𝑖, 𝜙) = 𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦∗

𝑖 , 𝜙).
An imporant clarification is that this NOT a conditional independence assumption. It is
an assumption about the evaluation of the conditional mass function 𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦𝑖, 𝜙) at a
specific 𝑚𝑖 (Mealli and Rubin 2015). This point is often misunderstood (including by me).

Conditional independence, 𝑀 ⟂⟂ 𝑌 would be characterized as missing-always-completely-at-
random (MACAR): Data are said to MACAR if the following holds for all 𝑖, 𝑚𝑖, 𝑦𝑖, 𝑦⋆

𝑖 , and
𝜙:

𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦𝑖, 𝜙) = 𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦∗
𝑖 , 𝜙).

The next mechanism is less restrictive than MCAR.

Missing at random (MAR)

Missing at random data are characterized by the following equality for all 𝑖, 𝑦(1)𝑖, 𝑦∗
(1)𝑖, and

𝜙:
𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦(0)𝑖, 𝑦(1)𝑖𝜙) = 𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦(0)𝑖, 𝑦∗

(1)𝑖𝜙)
Again, as with MCAR, this is a statement about the evaluation of the function 𝑓𝑀∣𝑌 (𝑚𝑖 ∣
𝑦𝑖, 𝜙). We can define a missing-at-random variant, missing-always-at-random (MAAR) that
is equivalent to 𝑀 ⟂⟂ 𝑌(1)𝑖 ∣ 𝑌(0)𝑖

2.

The following example is adapted from Mealli and Rubin (2015): Suppose we’re analyzing
data from that Crohn’s disease trial and 𝑦𝑖 has two components: 𝑦𝑖1 is CDAI at visit 1 and
𝑦𝑖2 is CDAI at visit 2. For patient 𝑖 suppose that 𝑚𝑖 = (1, 0). Consider two scenarios:

1. 𝑦𝑖2 is missing because 𝑦𝑖1 > 𝜙
2Missing always at random (MAAR)

Missing always at random data are characterized by the following equality for all 𝑖, 𝑚𝑖 𝑦(1)𝑖, 𝑦∗
(1)𝑖:

𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦(0)𝑖, 𝑦(1)𝑖𝜙) = 𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦(0)𝑖, 𝑦∗
(1)𝑖𝜙)

This is a more restrictive assumption than MAR alone, though one could see why MAAR might be
invoked for asymptotic arguments (Roderick J. Little 2021).
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2. 𝑦𝑖2 is missing because 𝑦𝑖2 > 𝜙

In scenario 1 the data are MAR because the mass function is a function of 𝑦𝑖1 only, while in
scenario 2 the data do not satisfy the definition of MAR.

Let’s make this example more general. The following is from Roderick JA Little and Rubin
(2019, 23). Again consider the bivariate case with 𝑦𝑖1, 𝑦𝑖2. There are 4 possible missing data
patterns:

(𝑚𝑖1, 𝑚𝑖2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}
We’ll need to define 𝑓𝑀∣𝑌 (𝑚𝑖1 = 𝑟, 𝑚𝑖2 = 𝑠 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜙). To simplify the notation, let

𝑔𝑟𝑠(𝑦𝑖1, 𝑦𝑖2, 𝜙) = 𝑓𝑀∣𝑌 (𝑚𝑖1 = 𝑟, 𝑚𝑖2 = 𝑠 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜙)

The MAR assumption implies the following:

𝑔11(𝑦𝑖1, 𝑦𝑖2, 𝜙) = 𝑔11(𝜙)
𝑔01(𝑦𝑖1, 𝑦𝑖2, 𝜙) = 𝑔01(𝑦𝑖1, 𝜙)
𝑔10(𝑦𝑖1, 𝑦𝑖2, 𝜙) = 𝑔10(𝑦𝑖2, 𝜙)
𝑔00(𝑦𝑖1, 𝑦𝑖2, 𝜙) = 1 − 𝑔10(𝑦𝑖2, 𝜙) − 𝑔01(𝑦𝑖1, 𝜙) − 𝑔11(𝜙)

Thus the probability that 𝑦𝑖𝑗 is missing can depend only on 𝑦𝑖(−𝑗), which is a bit odd.

Roderick JA Little and Rubin (2019) proposes the following modification:

𝑔11(𝑦𝑖1, 𝑦𝑖2, 𝜙) = 𝑔1+(𝑦𝑖1, 𝜙)𝑔+1(𝑦𝑖2, 𝜙)
𝑔01(𝑦𝑖1, 𝑦𝑖2, 𝜙) = (1 − 𝑔1+(𝑦𝑖1, 𝜙))𝑔+1(𝑦𝑖2, 𝜙)
𝑔10(𝑦𝑖1, 𝑦𝑖2, 𝜙) = 𝑔1+(𝑦𝑖1, 𝜙)(1 − 𝑔+1(𝑦𝑖2, 𝜙))
𝑔00(𝑦𝑖1, 𝑦𝑖2, 𝜙) = (1 − 𝑔1+(𝑦𝑖1, 𝜙))(1 − 𝑔+1(𝑦𝑖2, 𝜙))

While this is maybe more realistic, though it does make an assumption that 𝑚𝑖1 and 𝑚𝑖2
are conditionally independent given 𝑦𝑖1, 𝑦𝑖2, it is also hard to estimate, because we won’t
observe missing values of 𝑦𝑖1 and 𝑦𝑖2.

This is a scenario called missing-not-at-random, or MNAR. This is defined in the next sub-
section.

Missing-not-at-random (MNAR)

MNAR data is characterized by the following relationship:

𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦(0)𝑖, 𝑦(1)𝑖𝜙) ≠ 𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦(0)𝑖, 𝑦∗
(1)𝑖𝜙)

for some 𝜙 and 𝑦(0)𝑖 ≠ 𝑦∗
(0)𝑖 (Mealli and Rubin 2015).

The version using conditional dependence is called missing not always at random, or MNAAR,
which is
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𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦(0)𝑖, 𝑦(1)𝑖𝜙) ≠ 𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦(0)𝑖, 𝑦∗
(1)𝑖𝜙)

for some 𝜙, 𝑚𝑖, 𝑦(1)𝑖 and 𝑦(0)𝑖 ≠ 𝑦∗
(0)𝑖

Our textbook mentions that sometimes MAR can yield better results than MNAR, citing
Donald B. Rubin, Stern, and Vehovar (1995). This is something we’ll explore later on in the
course, namely how we would determine whether it was worth it to fit an MNAR model vs. a
MAR model. Not surpisingly, like most things in statistics, the answer is “It depends.”
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