
Missing data lecture 10: Flawed
approaches to missing data and EM

Flawed approach to missing data

One generally flawed approach to inference in missing data problems is to treat the missing
values as unknown parameters and to maximize the following function of parameters and
missing values:

𝐿mispar(𝜃, 𝑦(1) ∣ 𝑦(0)) = 𝑓𝑌 (𝑦(1), 𝑦(0) ∣ 𝜃)
The MLE using this distribution would require you to jointly maximize the likelihood with
respect to 𝜃 and 𝑦(1). Let’s take this approach with the censored exponential samples and
see what we get. We had that the likelihood was

𝑟
∏
𝑖=1

𝜃−1𝑒−𝑦𝑖/𝜃
1 (𝑦𝑖 < 𝑐)

𝑛
∏

𝑖=𝑟+1
𝜃−1𝑒−𝑦𝑖/𝜃

1 (𝑦𝑖 ≥ 𝑐) 𝑓(𝑦 ∣ 𝜃)

Because 𝑒−𝑦𝑖/𝜃 is monotonically decreasing in 𝑦𝑖 for any 𝜃, ̂𝑦𝑖 is 𝑐 for the missing observa-
tions.

Plugging this into the log-likelihood gives

−𝑟 log 𝜃 − (𝑛 − 𝑟) log 𝜃 − ∑𝑟
𝑖=1 𝑦𝑖 + (𝑛 − 𝑟)𝑐

𝜃
Taking derivatives and setting this equal to zero gives:

̂𝜃mispar = ∑𝑟
𝑖=1 𝑦𝑖 + (𝑛 − 𝑟)𝑐

𝑛 = 𝑟
𝑛

̂𝜃

This understates the true value 𝜃, and one can show that this estimator isn’t consistent for
𝜃. The only way this estimator is consistent for 𝜃 is if 𝑟/𝑛 → 1.

This example shows that the goal in missing data analysis isn’t to predict missing values,
it is to account for the uncertainty in missing values by integrating over the distribution of
missing values.
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Here is another example.

Let 𝑦𝑖 be normally distributed with unknown mean 𝜇 and variance 𝜎2. Suppose there are
𝑟 observed values and 𝑛 − 𝑟 missing values. We assume that the data are MAR and the
parameters 𝜇 and 𝜎2 are distinct from the parameters of the missingness distribution.

The MLE from the ignorable likelihood is just the MLE on the complete cases:

̂𝜇 =
𝑟

∑
𝑖=1

𝑦𝑖
𝑟 , 𝜎̂2 =

𝑟
∑
𝑖=1

(𝑦𝑖 − ̂𝜇2)
𝑟

If we write down the mistaken likelihood for the data we get:

ℓmispar(𝜇, 𝜎2, 𝑦𝑟+1, … , 𝑦𝑛 ∣ 𝑦(0)) = −𝑛
2 log 𝜎2 − 1

2𝜎2

𝑟
∑
𝑖=1

(𝑦𝑖 − 𝜇)2 − 1
2𝜎2

𝑛
∑

𝑖=𝑟+1
(𝑦𝑖 − 𝜇)2

We can maximize this by setting 𝑦𝑟+1, … , 𝑦𝑛 to 𝜇, thereby eliminating the second sum. This
leads to an MLE for 𝜇 that is equal to ̂𝜇 above. The variance, however, is incorrectly
estimated. Taking gradients and solving for 𝜎2 gives

𝜎̂2 =
𝑟

∑
𝑖=1

(𝑦𝑖 − ̂𝜇)2

𝑛

Why is this wrong? Intuitively, we can see that the expected value of the second term isn’t
zero, and thus we’ll understate the variance Thus, the MLE in the misparametrized model
yields a variance estimate that is too low.

Again, we want to integrate over our uncertainty in the missing values, rather than predict
missing values.

EM algorithm

The last section discussed how maximizing the likelihood as a function of the missing data
points was an incorrect way to go about doing likelihood inference when there is missing
data.

The “right” way to do so is to integrate over the uncertainty in your likelihood stemming
from the missing observations, and then maximize this object.

𝐿ign(𝜃 ∣ 𝑌(0) = ̃𝑦(0)) ∝ ∫
Y(1)

𝑓𝑌 (𝑌(0) = ̃𝑦(0), 𝑌(0) = 𝑦(1) ∣ 𝜃)𝑑𝑦(1)

We’ll call the log-likelihood above:

ℓ(𝜃 ∣ 𝑌(0) = ̃𝑦(0))
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Sometimes we can’t do this maximization directly in one step because it is tricky. Instead,
of doing the maximization directly we do so iteratively, and this is the motivation for the
Expectation-Maximization algorithm: Let ℓ𝑌 (𝜃 ∣ 𝑌 ) be the complete data log-likelihood,
and 𝑓(𝑌(1) ∣ 𝑌(0), 𝜃(𝑡)) be the distribution of missing values given the observed values and the
current best guess at the parameters 𝜃(𝑡). The object, which we’ll call 𝑄(𝜃 ∣ 𝜃(𝑡)), we want to
maximize is the expected log-likelihood, where we take the expectation over the conditional
distribution of the missing values

𝑄(𝜃 ∣ 𝜃(𝑡)) = ∫
Y(1)

ℓ𝑌 (𝜃 ∣ 𝑌(1), 𝑌(0) = ̃𝑦(0))𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃(𝑡))𝑑𝑌(1)

### Normal example, again

Continuing the normal example from above, we have that our complete data log-likelihood
is:

ℓ𝑌 (𝜇, 𝜎2 ∣ 𝑌(1), 𝑌(0)) = −𝑛
2 log 𝜎2 − 1

2𝜎2

𝑟
∑
𝑖=1

(𝑦𝑖 − 𝜇)2 − 1
2𝜎2

𝑛
∑

𝑖=𝑟+1
(𝑦𝑖 − 𝜇)2

Because we’ve assumed that the data are MAR (which in univariate settings equals MCAR),
we have that

𝑦𝑖 ∼ Normal(𝜇(𝑡), (𝜎2)(𝑡))
Then for each 𝑦𝑖,

𝔼 [𝑦2
𝑖 − 2𝜇𝑦𝑖 + 𝜇2] = (𝜇(𝑡))2 + (𝜎𝑡)2 − 2𝜇𝜇(𝑡) + 𝜇2

Then the expected log-likelihood is:

𝑄(𝜃 ∣ 𝜃(𝑡)) = −𝑛
2 log 𝜎2 − 1

2𝜎2

𝑟
∑
𝑖=1

(𝑦𝑖 − 𝜇)2 − 1
2𝜎2 (𝑛 − 𝑟)((𝜇(𝑡))2 + (𝜎𝑡)2 − 2𝜇𝜇(𝑡) + 𝜇2)

Taking partial derivatives with respect to 𝜇 gives:

0 = 1
𝜎2

𝑟
∑
𝑖=1

(𝑦𝑖 − 𝜇) − 1
𝜎2 (𝑛 − 𝑟)(−2𝜇(𝑡) + 2𝜇)

= 1
𝜎2 (

𝑟
∑
𝑖=1

𝑦𝑖 + (𝑛 − 𝑟)𝜇(𝑡)) − 𝑛 𝜇
𝜎2

Solving for 𝜇 gives the update rule for 𝜇(𝑡):

𝜇(𝑡+1) = ∑𝑟
𝑖=1 𝑦𝑖 + (𝑛 − 𝑟)𝜇(𝑡)

𝑛
Taking partials with respect to 𝜎2

𝜕𝑄(𝜃 ∣ 𝜃(𝑡))
𝜕𝜎2 = − 𝑛

2𝜎2 + 1
2𝜎4 (

𝑟
∑
𝑖=1

(𝑦𝑖 − 𝜇)2 + (𝑛 − 𝑟)((𝜇(𝑡))2 + (𝜎(𝑡))2 − 2𝜇𝜇(𝑡) + 𝜇2))
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Setting this equal to zero and simplifying gives:

0 = − 𝑛
2𝜎2 + 1

2𝜎4 (
𝑟

∑
𝑖=1

(𝑦𝑖 − 𝜇(𝑡+1))2 + (𝑛 − 𝑟)((𝜇(𝑡))2 + (𝜎(𝑡))2 − 2𝜇(𝑡+1)𝜇(𝑡) + (𝜇(𝑡+1))2))

This yields:

(𝜎2)(𝑡+1) = (∑𝑟
𝑖=1(𝑦𝑖 − 𝜇(𝑡+1))2 + (𝑛 − 𝑟)((𝜇(𝑡))2 + (𝜎(𝑡))2 − 2𝜇(𝑡+1)𝜇(𝑡) + (𝜇(𝑡+1))2))

𝑛
which simplifies to

(𝜎2)(𝑡+1) = (∑𝑟
𝑖=1 𝑦2

𝑖 + (𝑛 − 𝑟)((𝜇(𝑡))2 + (𝜎(𝑡))2)
𝑛 − (𝜇(𝑡+1))2

This shows why the prior procedure didn’t work; namely it ignores the extra variability in
imputations for the missing 𝑦2

𝑖 terms.

To see why this simplifies, expand out
𝑟

∑
𝑖=1

(𝑦𝑖 − 𝜇(𝑡+1))2 =
𝑟

∑
𝑖=1

𝑦2
𝑖 − 2𝜇(𝑡+1)

𝑟
∑
𝑖=1

𝑦𝑖 + 𝑟(𝜇(𝑡+1))2

and sub in the following expression for ∑𝑖 𝑦𝑖

𝑟
∑
𝑖=1

𝑦𝑖 = 𝑛𝜇(𝑡+1) − (𝑛 − 𝑟)𝜇(𝑡)

Plugging in our estimate for 𝜇(𝑡+1) gives the solution above.

One can show that the EM solution converges to the complete data result.

Nontrivial example

Here’s an example: Let’s say we have two outcomes, so 𝑌 is an 𝑛×2 matrix. For simplicity’s
sake, we assume the missingness is ignorable, and assume we have a general missingness
pattern, i.e. there are 3 patterns of missingness, assuming all participants had at least one
measurement. The parameters of interest are 𝜇1, 𝜇2, Σ, and we’d like to use all the available
data to do inference. If we had a complete dataset, we know from an earlier lecture the ML
solutions for these quantities:

̂𝜇1 = ̄𝑦1, ̂𝜇2 = ̄𝑦2, Σ̂ = 1/𝑛 ∑
𝑖

𝑦𝑖𝑦𝑇
𝑖 − ̂𝜇 ̂𝜇𝑇

Let

𝑟1 = #(𝑦1𝑖 obs, , 𝑦2𝑖 missing ), 𝑟2 = #(𝑦2𝑖 obs, , 𝑦1𝑖 missing ), 𝑛−𝑟1−𝑟2 = #(𝑦2𝑖 obs, , 𝑦1𝑖 obs )
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, and suppose we have arranged our indices 𝑖 so 𝑖 ∈ {1, … , 𝑟1} have 𝑦1 observed, 𝑖 ∈
{𝑟1 + 1, … , 𝑟1 + 𝑟2} have 𝑦2 observed and 𝑖 ∈ {𝑟1 + 𝑟2 + 1, … , 𝑛} have all data observed. Let
𝑓𝑌𝑗

(𝑦𝑗𝑖 ∣ 𝜇𝑗, Σ𝑗,𝑗), 𝑗 = 1, 2 be the univariate normal density, while 𝑓𝑌 (𝑦𝑖 ∣ 𝜇1, 𝜇2, Σ) is the
bivariate normal density. The observed data likelihood is

𝐿(𝜇1, 𝜇2, Σ ∣ 𝑌(0)) =
𝑟1

∏
𝑖=1

𝑓𝑌1
(𝑦1𝑖 ∣ 𝜇1, Σ1,1)

𝑟1+𝑟2

∏
𝑖=𝑟1+1

𝑓𝑌2
(𝑦2𝑖 ∣ 𝜇2, Σ2,2)

𝑛
∏

𝑖=𝑟1+𝑟2+1
𝑓𝑌2

(𝑦𝑖 ∣ 𝜇1, 𝜇2, Σ)

We can find the MLEs for this expression, but it isn’t standard, and it’ll involve some
thinking, whereas if we had a complete dataset we could just do the maximization very
easily. The two variable dataset seems pretty tractable, but imagine we had many variables
with lots of missingness patterns, and then the maximization would be hard.

Why does EM work?

Why does this work? We want to show that maximizing 𝑄 is equivalent to maximizing
𝐿ign.

We can write the complete data distribution as the product of two factors:

𝑓𝑌 (𝑌(1), 𝑌(0) ∣ 𝜃) = 𝑓(𝑌(0) ∣ 𝜃)𝑓(𝑌(1) ∣ 𝑌(0), 𝜃)

Taking logs gives us the complete data likelihood in terms of the observe data likelihood and
the log likelihood of the conditional distribution of the missing data given the observed data
and a parameter value.

ℓ𝑌 (𝑌(1), 𝑌(0) ∣ 𝜃) = log(𝑓(𝑌(0) ∣ 𝜃)) + log(𝑓(𝑌(1) ∣ 𝑌(0), 𝜃))

The first term is the observed data likelihood, which is what we want to maximize. Rear-
ranging gives:

log(𝑓(𝑌(0) ∣ 𝜃)) = ℓ𝑌 (𝑌(1), 𝑌(0) ∣ 𝜃) − log(𝑓(𝑌(1) ∣ 𝑌(0), 𝜃))

Taking expectations for a current iterate 𝜃𝑟 over 𝑓(𝑌(1) ∣ 𝑌(0), 𝜃𝑡), gives

𝔼𝑓(𝑌(1)∣𝑌(0),𝜃𝑡) [log(𝑓(𝑌(0) ∣ 𝜃))] = 𝑄(𝜃 ∣ 𝜃𝑡) − 𝐻(𝜃 ∣ 𝜃𝑡)

where 𝑄 is as above and 𝐻(𝜃 ∣ 𝜃𝑡) is:

𝐻(𝜃 ∣ 𝜃(𝑡)) = ∫
Y(1)

log 𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃)𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃𝑡)𝑑𝑌(1)

We can show that 𝐻(𝜃 ∣ 𝜃𝑡) ≤ 𝐻(𝜃𝑡 ∣ 𝜃𝑡) for all 𝜃.
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𝐻(𝜃 ∣ 𝜃𝑡) − 𝐻(𝜃𝑡 ∣ 𝜃𝑡) = ∫
Y(1)

log
𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃)
𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃𝑡)𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃𝑡)𝑑𝑌(1)

= 𝔼𝑓(𝑌(1)∣𝑌(0)= ̃𝑦(0),𝜃𝑡) [log
𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃)

𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0)
]

≤ log 𝔼𝑓(𝑌(1)∣𝑌(0)= ̃𝑦(0),𝜃𝑡) [
𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃)

𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0)
]

= log 1 = 0
This is the same proof that shows that the KL divergence is always positive!

KL(𝑓 ∣ 𝑔) = ∫
Y

log 𝑓(𝑦)
𝑔(𝑦) 𝑓(𝑦)𝑑𝑦

Now we look at the value of the maximized oberved data likelihood:

𝔼𝑓(𝑌(1)∣𝑌(0),𝜃𝑡) [log(𝑓(𝑌(0) ∣ 𝜃𝑡))]

and how this changes between steps 𝑡 and 𝑡 + 1 so that 𝜃𝑡+1 as 𝜃𝑡+1 = argmax𝜃𝑄(𝜃 ∣ 𝜃𝑡).
The difference between the observed likelihoods

𝔼𝑓(𝑌(1)∣𝑌(0),𝜃𝑡+1) [log(𝑓(𝑌(0) ∣ 𝜃𝑡+1))] −𝔼𝑓(𝑌(1)∣𝑌(0),𝜃𝑡) [log(𝑓(𝑌(0) ∣ 𝜃𝑡))]
= 𝑄(𝜃𝑡+1 ∣ 𝜃𝑡) − 𝑄(𝜃𝑡 ∣ 𝜃𝑡) − (𝐻(𝜃𝑡+1 ∣ 𝜃𝑡) − 𝐻(𝜃𝑡 ∣ 𝜃𝑡))

Thus, by maximizing the expected complete data likelihood, we in turn maximize the func-
tion we really want, namely the observed likelihood.

Another result is that if 𝜃𝑡+1 is chosen such that: 1. 𝜕
𝜕𝜃𝑄(𝜃 ∣ 𝜃𝑡) ∣𝜃=𝜃𝑡+1= 0

2. 𝜃𝑡+1 → 𝜃⋆

3. 𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃) is sufficiently smooth in 𝜃

Then
𝜕
𝜕𝜃ℓ(𝜃 ∣ 𝑌(0) = ̃𝑦(0)) ∣𝜃=𝜃⋆= 0

𝜕
𝜕𝜃ℓ(𝜃 ∣ 𝑌(0) = ̃𝑦(0)) ∣𝜃=𝜃⋆= 𝜕

𝜕𝜃𝑄(𝜃 ∣ 𝜃𝑡) ∣𝜃=𝜃⋆ − 𝜕
𝜕𝜃𝐻(𝜃 ∣ 𝜃𝑡) ∣𝜃=𝜃⋆
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The first quantity on the RHS is zero by the condition that we pick 𝜃𝑡+1 as that which leads
to 𝜕

𝜕𝜃𝑄(𝜃 ∣ 𝜃𝑡) ∣𝜃=𝜃⋆= 0, so if 𝜃𝑡 → 𝜃⋆, we must have gotten there by setting these gradients
equal to zero. The second quantity on the RHS is

𝜕
𝜕𝜃𝐻(𝜃 ∣ 𝜃𝑡) ∣𝜃=𝜃⋆ = 𝜕

𝜕𝜃 ∫
Y(1)

log 𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃)𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃𝑡)𝑑𝑌(1) ∣𝜃=𝜃⋆

= ∫
Y(1)

𝜕
𝜕𝜃𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃) ∣𝜃=𝜃⋆

𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃⋆) 𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃𝑡)𝑑𝑌(1) ∣𝜃=𝜃⋆

as 𝜃𝑡 → 𝜃⋆ the denominators cancel, leaving

∫
Y(1)

𝜕
𝜕𝜃𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃) ∣𝜃=𝜃⋆ 𝑑𝑌(1)

which, if we pull the derivative out of the integral again, equals zero because we’re differen-
tiating a constant.

Multivariate normal example again

In the multivariate normal example we know how to maximize the likelihood, but how do
we do the conditional expectation?

𝔼 [ℓ𝑌 (𝜇, Σ ∣ 𝑌 ) ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] = 1
2 log(det Σ−1)−1

2tr ∑
𝑖

𝔼 [((𝑦𝑖 − 𝜇)(𝑦𝑖 − 𝜇)𝑇 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] Σ−1)

If we expand out the cross product, we see we need

𝔼 [(𝑦𝑖 − 𝜇)(𝑦𝑖 − 𝜇)𝑇 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] = 𝔼 [𝑦𝑖𝑦𝑇
𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡]−𝔼 [𝜇𝑦𝑇

𝑖 − 𝑦𝑇
𝑖 𝜇 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡]−𝜇𝜇𝑇

The first term is :

𝔼 [𝑦𝑖𝑦𝑇
𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] = Cov(𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡) + 𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] 𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡]𝑇

Plugging this back in above gives:

Cov(𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡)+𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] 𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡]𝑇 −𝔼 [𝜇𝑦𝑇
𝑖 − 𝑦𝑇

𝑖 𝜇 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡]−𝜇𝜇𝑇

simplifying to

Cov(𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡) + (𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] − 𝜇)(𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] − 𝜇)𝑇
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Pluggig this back in above, we get the expected log-likelihood

𝔼 [ℓ𝑌 (𝜇, Σ ∣ 𝑌 ) ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] = 1
2 log(det Σ−1)

− 1
2tr ∑

𝑖
(Cov(𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡) + (𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] − 𝜇)(𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] − 𝜇)𝑇 ) Σ−1

This leads to the M step estimates:

𝜇𝑡+1 = 1
𝑛 ∑

𝑖
𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] ,

and for

Σ𝑡+1 = 1
𝑛 ∑

𝑖
Cov(𝑦𝑖 ∣ 𝑦𝑖(0), 𝜇𝑡, Σ𝑡)+(𝔼 [𝑦𝑖 ∣ 𝑦𝑖(0), 𝜇𝑡, Σ𝑡]−𝜇𝑡+1)(𝔼 [𝑦𝑖 ∣ 𝑦𝑖(0), 𝜇𝑡, Σ𝑡]−𝜇𝑡+1)𝑇

The key is that the conditional expectation and covariances for 𝑦𝑖 are informed by the
observed data.
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