Missing data lecture 11: More EM

One more EM convergence result

Another result is that if 8271 is chosen such that:
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The first quantity on the RHS is zero by the condition that we pick #**! as that which leads
to ZQ(0 | 0Y) |g_g-= 0, so if 6 — 6*, we must have gotten there by setting these gradients
equal to zero. The second quantity on the RHS is
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as 6 — 0* the denominators cancel, leaving
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which, if we pull the derivative out of the integral again, equals zero because we're differen-
tiating a constant.



Nontrivial EM example

Here’s a nontrivial example: Let’s say we have three outcomes, so Y is an n x 3 matrix, and
Y, are distributed trivariate normal with means, p;, i, 13 and covariance matrix 3. For
simplicity’s sake, we assume the missingness is ignorable, and assume we have only three

missingness patterns:

m; € {(0,0,1), (1,0,0), (0,0,0)}.

The parameters of interest are fiy, 1o, i3, 2, and we’d like to use all the available data to do
inference. Let the three groups that have missingness be defined as:

T = #(yy1; obs, ,yy; Obs , ys; miss. )
Ty = #(yy; miss, ,yy; 0bs ,ys; obs )
n—ry — 13 = ##(yy; obs, ,y,; obs, ,ys; obs )

, and suppose we have arranged our indices i so ¢ € {1,...,7,} have y; observed, i €
{ry +1,...,7; + ry} have y, observed and i € {r; + 75 + 1,...,n} have all data observed.
z Let fyj’yk((yﬁ,yki) | (k45 115), Xj1), 7 = 1,2 be the bivariate normal density for indices

7.k, 7 # k, where

Ejk =L [((Yga Yk)T - (/ij; Mk)T)((Y}a Yy) — (Mj, Mk))]
while fy-(y; | pqs pg, 3X) is the trivariate normal density. The observed data likelihood is
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This is going to be a hard function to maximize in terms of . We can find the MLEs for
this expression, but it isn’t standard, and it’'ll involve some thinking, whereas if we had a
complete dataset we could just do the maximization very easily.

If we had a complete dataset, we know from an earlier lecture the ML solutions for these
quantities:

fa = Y1, Ho = Yo, i3 = Y3, X = 1/nzyiy?_ﬁﬁT
i

How can we get an MLE when there is ignorable missingness as described above?



Multivariate normal with missingness

We can run the EM algorithm, which will require computing the Q(6 | 6*) function. For the
multivariate normal example, this is:

E[6y (1,3 Y) | Y, put, 5] = %log(det E*)—%“Z E (g — )y — w7 | Yo ut, 2 57

If we expand out the cross product, we see we need
E[(y; — )y — )7 | Yoo 1, B = E [yl | Yoy, pt, S —E [pgd — yT 1 | Vg, pt, St —pup”
The first term is :
T
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Plugging this back in above gives:

T
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simplifying to
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Pluggig this back in above, we get the expected log-likelihood
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This leads to the M step estimates:

/J’t+l = %Z E [yz | Y(o),/ltazt )
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and for
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The key is that the conditional expectation and covariances for y, are informed by the
observed data.



Suppose our observation is in the first group, so m; = (0,0,1). Then we need to compute
Cov(y; | Y1, Ysns ¥, 2F), which is

Var(y;; | yilayi27,ut7 Et) Cov (Y1, Ysa | 3/117%'2,#75» Et) Cov(¥i1, Y3 | yilayi27:ut> Zt)
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COV(?Jﬂayz’g | yﬂayiQaMt»Et) COV(?JQ»?JB | yihinvUt? Et) Var(yi3 | yi17yi27//’t7 Et)

Most of the elements of this matrix are zero, because of the properties of conditional expec-
tation. Look at Cov(y,1, Y3 | ¥i1s Yins 5 2F), for instance:

Cov(Yi1, Yiz | Vit Yior 115 5Y) = Elya iz | Yirs Yizs 15 Z=E [Yi1 | vir, Yio» 15, ST E [Wiz | Yin, Yin, 1, 5]
E [%1%‘3 ’ yi17yi2aut7 Et] =y, L [%3 ‘ yilvyin,UJt?Et]
and similarly
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so we get
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=0

The same holds for the conditional variances. The only nonzero element is Var(y;s; |
Vi1, Yizs 15, XF). We can use the properties of the conditional normal distribution to derive
the conditional variance.

Let our covariance matrix X be defined:

o
by 13} o? o
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Then the conditional variance, evaluated at p*, () is:
2)\(t) (t) _(t) (t)y—1 0(12
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The conditional mean, E [y;5 | ¥;1, Y;o, 1', XF] is
t
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Similar formulas can be used for the second group, where you have observed ¥;,, y;5, but not
Yi1-



Measuring uncertainty in EM parameter estimates

We might want to find something like standard errors for our parameter estimates. We can
get asymptotic standard errors from the inverse of the information matrix: I(6 | Y(p))™":
Starting with our standard decomposition of the observed data log likelihood:

by (0| Yy = yay Yio) = o)) = log(f Yoy = Gy | 0)) + log(f (Y1) = vy | Yio) = Ui0), 0))
Rearranging

log(f(Yi0) = o) | 0)) = Ly (0| Y1y = y1y, Yio) = Hio)) —log(f (Y1) = 1) | Yio) = Yi0):0))
we can differentiate twice to get:
=V log(f(Yio) = o) | 0) = =V5ly (0 | Yoy = vy, Yio) = F0)+ Vi log(f (Y = vy | Yio) = Ti0): 0))

which is equivalent to:

10| Y = 5(0)> =1(0 | Y = 5(0)7Y(1) = y(1)) + V§ log(f(Y(l) =Y | Y = ?7(0)=9>)

where I(0 | Y5y = §g)) is the observed information. Taking expectations with respect
random variable Y(; | Y(o) = (), 0" gives

18 Yoy = Fi0)) = Evi, o =000 (10| Yio) = o) Yu))| + Exiy v =00 | Va 108/ (V) | Yio) = Fio): 0))]
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When we have reached a stationary point 6*, we can evaluate the first term on the right
easily:
—V3Q(010") p_pe

We can get the second term in EM from Louis’ Identity:

—VGH(0 [ 0°) =Ey. v, =300 {Vegy(e | Yy = vy Yio) = J0) Vely (0 | Yy = y), Yio) = ﬂ(o))T]
— Voly (0| Yio) = J0)) Vely (0| Yio) = F0)"

where we note that at the stationary point, the gradient is zero, so we get:

—V3H(0]6") |opeg-= By, 1¥io =0, [Vegy(e | Y1) = vy Yio) = i0) Vely (0 | Y1) = y), Yio) = ﬂ(o))T] lo—o

The final expression is:
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Variants of EM
The standard EM algorithm has two important characteristics that may make it hard to
apply in practice:

1. The expectation step of the log-likelihood might be intractable.

2. The M step might not be able to be done exactly.

There are variants of the EM algorithm that can handle both of these issue.

GEM: Generalized EM

If we can’t maximize the Q(@ | %) exactly, we can instead set #**1 so that

Q0" | 0") < Q6" | 0).

We showed last time that any value of ™! for which the above holds will lead to an increase
in the observed likelihood, which is ultimately what we're trying to maximize.

One can show that we still reach a stationary point for the observed likelihood under a GEM
algorithm.

ECM

The first variant of EM is called ECM, or Expectation-Conditional Maximization. This
is a GEM algorithm, so if we can’t do the maximizaton step exactly, we can instead do
conditional maximization, which at least increases the () function each iteration. We have
an example of this sort of model from the first few weeks of class: the repeated measures
model:

yi | Xi = XiB+ ¢
¢; ~ Normal(0, X)
€ 1l e;Vizj

We can look back in our notes to see that we have an iterative maximization scheme for this
model:
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Each step of the conditional maximization increased the complete data likelihood:
eY(ﬁt+17Et | Y) > eY(ﬁt7Et | Y)
EY(ﬁH—la Zt+1 | Y) Z KY(/BH—:[? Et | Y)

Thus, if we had missing outcome data in our regression, we could run an ECM algorithm
with the following steps:

1. Initialize with 8%, %!
2. For t = 2, ... compute
a. Find the conditional expectations: [E [yi | Yio), X, 8%, Zt}, [yzyz | Yio), X, 8%, Zt]

b. Set B! to:
t+1 (Z XT X ) ZXT l[E [yz | Y X,Bt7 Zt]

c. Set X+ to:
1
B = n Z E [(yz - Xiﬁ(t+1))(yi - Xiﬁ(tﬂ))T | Yoy, X, s, Zt]

7

d. I QO | 0Y) — Q(#' | ') > ¢, continue, otherwise end

Monte Carlo EM

Monte Carlo EM (MCEM) algorithms can be used when the conditional expectation is not
possible to do analytically. That is, if we cannot do this integral:

Q6| 6 / by (0] Yo = Yy = yu)f Yy = vy | Yio) = J0) 0 dy )

we can instead approxnnate it with a Monte Carlo estimator. Assuming we can draw samples
from y¢), ~ f(Y) | Yio) = §(0); 0")), we can compute:

S

2 tr(01Yio) =Tl Y = 9y

s=1

Q0] 6)

CQ|*—‘

which we know:

lim QO] 6%) =Q(0]0%)

This change in the algorithm isn’t without its complications, because we now have to deter-
mine how to measure convergence. While it is true that Q(8%1) | 1)) > Q8 | 1)), we
now have to contend with the fact that there is noise in our assessment of convergence, so
we need something more like:

P(Q(OY | 6) — Q) | 6)) > ¢)
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