
Missing data lecture 11: More EM

One more EM convergence result

Another result is that if 𝜃𝑡+1 is chosen such that:

1. 𝜕
𝜕𝜃𝑄(𝜃 ∣ 𝜃𝑡) ∣𝜃=𝜃𝑡+1= 0

2. 𝜃𝑡+1 → 𝜃⋆

3. 𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃) is sufficiently smooth in 𝜃

Then
𝜕
𝜕𝜃ℓ(𝜃 ∣ 𝑌(0) = ̃𝑦(0)) ∣𝜃=𝜃⋆= 0

𝜕
𝜕𝜃ℓ(𝜃 ∣ 𝑌(0) = ̃𝑦(0)) ∣𝜃=𝜃⋆= 𝜕

𝜕𝜃𝑄(𝜃 ∣ 𝜃𝑡) ∣𝜃=𝜃⋆ − 𝜕
𝜕𝜃𝐻(𝜃 ∣ 𝜃𝑡) ∣𝜃=𝜃⋆

The first quantity on the RHS is zero by the condition that we pick 𝜃𝑡+1 as that which leads
to 𝜕

𝜕𝜃𝑄(𝜃 ∣ 𝜃𝑡) ∣𝜃=𝜃⋆= 0, so if 𝜃𝑡 → 𝜃⋆, we must have gotten there by setting these gradients
equal to zero. The second quantity on the RHS is

𝜕
𝜕𝜃𝐻(𝜃 ∣ 𝜃𝑡) ∣𝜃=𝜃⋆ = 𝜕

𝜕𝜃 ∫
Y(1)

log 𝑓(𝑌(1) = 𝑦(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃)𝑓(𝑌(1) = 𝑦(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃𝑡)𝑑𝑦(1) ∣𝜃=𝜃⋆

= ∫
Y(1)

𝜕
𝜕𝜃𝑓(𝑌(1) = 𝑦(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃) ∣𝜃=𝜃⋆

𝑓(𝑌(1) = 𝑦(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃⋆) 𝑓(𝑌(1) = 𝑦(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃𝑡)𝑑𝑦(1) ∣𝜃=𝜃⋆

as 𝜃𝑡 → 𝜃⋆ the denominators cancel, leaving

∫
Y(1)

𝜕
𝜕𝜃𝑓(𝑌(1) = 𝑦(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃) ∣𝜃=𝜃⋆ 𝑑𝑌(1)

which, if we pull the derivative out of the integral again, equals zero because we’re differen-
tiating a constant.
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Nontrivial EM example

Here’s a nontrivial example: Let’s say we have three outcomes, so 𝑌 is an 𝑛 × 3 matrix, and
𝑌𝑖 are distributed trivariate normal with means, 𝜇1, 𝜇2, 𝜇3 and covariance matrix Σ. For
simplicity’s sake, we assume the missingness is ignorable, and assume we have only three
missingness patterns:

𝑚𝑖 ∈ {(0, 0, 1), (1, 0, 0), (0, 0, 0)}.
The parameters of interest are 𝜇1, 𝜇2, 𝜇3, Σ, and we’d like to use all the available data to do
inference. Let the three groups that have missingness be defined as:

𝑟1 = #(𝑦1𝑖 obs, , 𝑦2𝑖 obs , 𝑦3𝑖 miss. )
𝑟2 = #(𝑦1𝑖 miss, , 𝑦2𝑖 obs , 𝑦3𝑖 obs )

𝑛 − 𝑟1 − 𝑟3 = #(𝑦1𝑖 obs, , 𝑦2𝑖 obs, , 𝑦3𝑖 obs )

, and suppose we have arranged our indices 𝑖 so 𝑖 ∈ {1, … , 𝑟1} have 𝑦1 observed, 𝑖 ∈
{𝑟1 + 1, … , 𝑟1 + 𝑟2} have 𝑦2 observed and 𝑖 ∈ {𝑟1 + 𝑟2 + 1, … , 𝑛} have all data observed.
z Let 𝑓𝑌𝑗,𝑌𝑘

((𝑦𝑗𝑖, 𝑦𝑘𝑖) ∣ (𝜇𝑗, 𝜇𝑘), Σ𝑗𝑘), 𝑗 = 1, 2 be the bivariate normal density for indices
𝑗, 𝑘, 𝑗 ≠ 𝑘, where

Σ𝑗𝑘 = 𝔼 [((𝑌𝑗, 𝑌𝑘)𝑇 − (𝜇𝑗, 𝜇𝑘)𝑇 )((𝑌𝑗, 𝑌𝑘) − (𝜇𝑗, 𝜇𝑘))]

while 𝑓𝑌 (𝑦𝑖 ∣ 𝜇1, 𝜇2, 𝜇3Σ) is the trivariate normal density. The observed data likelihood is

𝐿(𝜇1, 𝜇2, 𝜇3Σ, ∣ 𝑌(0)) =
𝑟1

∏
𝑖=1

𝑓𝑌1,𝑌2
(𝑦1𝑖, 𝑦2𝑖 ∣ 𝜇1, 𝜇2, Σ12)

𝑟1+𝑟2

∏
𝑖=𝑟1+1

𝑓𝑌2,𝑌3
(𝑦2𝑖, 𝑦3𝑖 ∣ 𝜇2, 𝜇3, Σ23)

𝑛
∏

𝑖=𝑟1+𝑟2+1
𝑓𝑌 (𝑦𝑖 ∣ 𝜇1, 𝜇2, 𝜇3, Σ)

This is going to be a hard function to maximize in terms of Σ. We can find the MLEs for
this expression, but it isn’t standard, and it’ll involve some thinking, whereas if we had a
complete dataset we could just do the maximization very easily.

If we had a complete dataset, we know from an earlier lecture the ML solutions for these
quantities:

̂𝜇1 = ̄𝑦1, ̂𝜇2 = ̄𝑦2, ̂𝜇3 = ̄𝑦3, Σ̂ = 1/𝑛 ∑
𝑖

𝑦𝑖𝑦𝑇
𝑖 − ̂𝜇 ̂𝜇𝑇

How can we get an MLE when there is ignorable missingness as described above?
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Multivariate normal with missingness

We can run the EM algorithm, which will require computing the 𝑄(𝜃 ∣ 𝜃𝑡) function. For the
multivariate normal example, this is:

𝔼 [ℓ𝑌 (𝜇, Σ ∣ 𝑌 ) ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] = 1
2 log(det Σ−1)−1

2tr ∑
𝑖

𝔼 [((𝑦𝑖 − 𝜇)(𝑦𝑖 − 𝜇)𝑇 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] Σ−1)

If we expand out the cross product, we see we need

𝔼 [(𝑦𝑖 − 𝜇)(𝑦𝑖 − 𝜇)𝑇 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] = 𝔼 [𝑦𝑖𝑦𝑇
𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡]−𝔼 [𝜇𝑦𝑇

𝑖 − 𝑦𝑇
𝑖 𝜇 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡]−𝜇𝜇𝑇

The first term is :

𝔼 [𝑦𝑖𝑦𝑇
𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] = Cov(𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡) + 𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] 𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡]𝑇

Plugging this back in above gives:

Cov(𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡)+𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] 𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡]𝑇 −𝔼 [𝜇𝑦𝑇
𝑖 − 𝑦𝑇

𝑖 𝜇 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡]−𝜇𝜇𝑇

simplifying to

Cov(𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡) + (𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] − 𝜇)(𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] − 𝜇)𝑇

Pluggig this back in above, we get the expected log-likelihood

𝔼 [ℓ𝑌 (𝜇, Σ ∣ 𝑌 ) ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] = 1
2 log(det Σ−1)

− 1
2tr ∑

𝑖
(Cov(𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡) + (𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] − 𝜇)(𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] − 𝜇)𝑇 ) Σ−1

This leads to the M step estimates:

𝜇𝑡+1 = 1
𝑛 ∑

𝑖
𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝜇𝑡, Σ𝑡] ,

and for

Σ𝑡+1 = 1
𝑛 ∑

𝑖
Cov(𝑦𝑖 ∣ ̃𝑦𝑖(0), 𝜇𝑡, Σ𝑡)+(𝔼 [𝑦𝑖 ∣ ̃𝑦𝑖(0), 𝜇𝑡, Σ𝑡]−𝜇𝑡+1)(𝔼 [𝑦𝑖 ∣ ̃𝑦𝑖(0), 𝜇𝑡, Σ𝑡]−𝜇𝑡+1)𝑇

The key is that the conditional expectation and covariances for 𝑦𝑖 are informed by the
observed data.
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Suppose our observation is in the first group, so 𝑚𝑖 = (0, 0, 1). Then we need to compute
Cov(𝑦𝑖 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡), which is

⎡⎢
⎣

Var(𝑦𝑖1 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡) Cov(𝑦𝑖1, 𝑦𝑖2 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡) Cov(𝑦𝑖1, 𝑦𝑖3 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡)
Cov(𝑦𝑖1, 𝑦𝑖2 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡) Var(𝑦𝑖2 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡) Cov(𝑦𝑖2, 𝑦𝑖3 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡)
Cov(𝑦𝑖1, 𝑦𝑖3 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡) Cov(𝑦𝑖2, 𝑦𝑖3 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡) Var(𝑦𝑖3 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡)

⎤⎥
⎦

Most of the elements of this matrix are zero, because of the properties of conditional expec-
tation. Look at Cov(𝑦𝑖1, 𝑦𝑖3 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡), for instance:

Cov(𝑦𝑖1, 𝑦𝑖3 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡) = 𝔼 [𝑦𝑖1𝑦𝑖3 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡]−𝔼 [𝑦𝑖1 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡] 𝔼 [𝑦𝑖3 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡]

𝔼 [𝑦𝑖1𝑦𝑖3 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡] = 𝑦𝑖1𝔼 [𝑦𝑖3 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡]
and similarly

𝔼 [𝑦𝑖1 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡] = 𝑦𝑖1

so we get

Cov(𝑦𝑖1, 𝑦𝑖3 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡) =𝑦𝑖1𝔼 [𝑦𝑖3 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡] − 𝑦𝑖1𝔼 [𝑦𝑖3 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡]
=0

The same holds for the conditional variances. The only nonzero element is Var(𝑦𝑖3 ∣
𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡). We can use the properties of the conditional normal distribution to derive
the conditional variance.

Let our covariance matrix Σ be defined:

Σ = ⎡⎢
⎣

Σ12 [𝜎13
𝜎23

]
[𝜎13 𝜎23] 𝜎2

3

⎤⎥
⎦

, Σ12 = [ 𝜎2
1 𝜎12

𝜎12 𝜎2
2

]

Then the conditional variance, evaluated at 𝜇(𝑡), Σ(𝑡) is:

(𝜎2
3)(𝑡) − [𝜎(𝑡)

13 𝜎(𝑡)
23] (Σ(𝑡)

12)−1 [𝜎(𝑡)
13

𝜎(𝑡)
23

]

The conditional mean, 𝔼 [𝑦𝑖3 ∣ 𝑦𝑖1, 𝑦𝑖2, 𝜇𝑡, Σ𝑡] is

𝜇(𝑡)
3 + [𝜎(𝑡)

13 𝜎(𝑡)
23] (Σ(𝑡)

12)−1 [𝑦𝑖1 − 𝜇(𝑡)
1

𝑦𝑖2 − 𝜇(𝑡)
2

]

Similar formulas can be used for the second group, where you have observed 𝑦𝑖2, 𝑦𝑖3, but not
𝑦𝑖1.
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Measuring uncertainty in EM parameter estimates

We might want to find something like standard errors for our parameter estimates. We can
get asymptotic standard errors from the inverse of the information matrix: 𝐼(𝜃 ∣ 𝑌(0))−1:
Starting with our standard decomposition of the observed data log likelihood:

ℓ𝑌 (𝜃 ∣ 𝑌(1) = 𝑦(1), 𝑌(0) = ̃𝑦(0)) = log(𝑓(𝑌(0) = ̃𝑦(0) ∣ 𝜃)) + log(𝑓(𝑌(1) = 𝑦(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃))
Rearranging

log(𝑓(𝑌(0) = ̃𝑦(0) ∣ 𝜃)) = ℓ𝑌 (𝜃 ∣ 𝑌(1) = 𝑦(1), 𝑌(0) = ̃𝑦(0)) − log(𝑓(𝑌(1) = 𝑦(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃))
we can differentiate twice to get:

−∇2
𝜃 log(𝑓(𝑌(0) = ̃𝑦(0) ∣ 𝜃)) = −∇2

𝜃ℓ𝑌 (𝜃 ∣ 𝑌(1) = 𝑦(1), 𝑌(0) = ̃𝑦(0))+∇2
𝜃 log(𝑓(𝑌(1) = 𝑦(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃))

which is equivalent to:

𝐼(𝜃 ∣ 𝑌(0) = ̃𝑦(0)) = 𝐼(𝜃 ∣ 𝑌(0) = ̃𝑦(0), 𝑌(1) = 𝑦(1)) + ∇2
𝜃 log(𝑓(𝑌(1) = 𝑦(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃))

where 𝐼(𝜃 ∣ 𝑌(0) = ̃𝑦(0)) is the observed information. Taking expectations with respect
random variable 𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃𝑡 gives

𝐼(𝜃 ∣ 𝑌(0) = ̃𝑦(0)) = 𝔼𝑌(1)∣𝑌(0)= ̃𝑦(0),𝜃𝑡 [𝐼(𝜃 ∣ 𝑌(0) = ̃𝑦(0), 𝑌(1))] + 𝔼𝑌(1)∣𝑌(0)= ̃𝑦(0),𝜃𝑡 [∇2
𝜃 log(𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃))]

= −∇2
𝜃𝑄(𝜃 ∣ 𝜃𝑡) + ∇2

𝜃𝐻(𝜃 ∣ 𝜃𝑡)
When we have reached a stationary point 𝜃⋆, we can evaluate the first term on the right
easily:

−∇2
𝜃𝑄(𝜃 ∣ 𝜃𝑡) ∣𝜃=𝜃⋆

We can get the second term in EM from Louis’ Identity:

−∇2
𝜃𝐻(𝜃 ∣ 𝜃𝑡) =𝔼𝑌(1)∣𝑌(0)= ̃𝑦(0),𝜃𝑡 [∇𝜃ℓ𝑌 (𝜃 ∣ 𝑌(1) = 𝑦(1), 𝑌(0) = ̃𝑦(0))∇𝜃ℓ𝑌 (𝜃 ∣ 𝑌(1) = 𝑦(1), 𝑌(0) = ̃𝑦(0))𝑇 ]

− ∇𝜃ℓ𝑌 (𝜃 ∣ 𝑌(0) = ̃𝑦(0))∇𝜃ℓ𝑌 (𝜃 ∣ 𝑌(0) = ̃𝑦(0))𝑇

where we note that at the stationary point, the gradient is zero, so we get:

−∇2
𝜃𝐻(𝜃 ∣ 𝜃𝑡) ∣𝜃=𝜃⋆= 𝔼𝑌(1)∣𝑌(0)= ̃𝑦(0)

[∇𝜃ℓ𝑌 (𝜃 ∣ 𝑌(1) = 𝑦(1), 𝑌(0) = ̃𝑦(0))∇𝜃ℓ𝑌 (𝜃 ∣ 𝑌(1) = 𝑦(1), 𝑌(0) = ̃𝑦(0))𝑇 ] ∣𝜃=𝜃⋆

The final expression is:

𝐼(𝜃⋆ ∣ 𝑌(0) = ̃𝑦(0)) = − ∇2
𝜃𝑄(𝜃 ∣ 𝜃⋆) ∣𝜃=𝜃⋆

− 𝔼𝑌(1)∣𝑌(0)= ̃𝑦(0)
[∇𝜃ℓ𝑌 (𝜃 ∣ 𝑌(1) = 𝑦(1), 𝑌(0) = ̃𝑦(0))∇𝜃ℓ𝑌 (𝜃 ∣ 𝑌(1) = 𝑦(1), 𝑌(0) = ̃𝑦(0))𝑇 ] ∣𝜃=𝜃⋆
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Variants of EM

The standard EM algorithm has two important characteristics that may make it hard to
apply in practice:

1. The expectation step of the log-likelihood might be intractable.

2. The M step might not be able to be done exactly.

There are variants of the EM algorithm that can handle both of these issue.

GEM: Generalized EM

If we can’t maximize the 𝑄(𝜃 ∣ 𝜃𝑡) exactly, we can instead set 𝜃𝑡+1 so that

𝑄(𝜃𝑡 ∣ 𝜃𝑡) ≤ 𝑄(𝜃𝑡+1 ∣ 𝜃𝑡).

We showed last time that any value of 𝜃𝑡+1 for which the above holds will lead to an increase
in the observed likelihood, which is ultimately what we’re trying to maximize.

One can show that we still reach a stationary point for the observed likelihood under a GEM
algorithm.

ECM

The first variant of EM is called ECM, or Expectation-Conditional Maximization. This
is a GEM algorithm, so if we can’t do the maximizaton step exactly, we can instead do
conditional maximization, which at least increases the 𝑄 function each iteration. We have
an example of this sort of model from the first few weeks of class: the repeated measures
model:

𝑦𝑖 ∣ 𝑋𝑖 = 𝑋𝑖𝛽 + 𝜖𝑖
𝜖𝑖 ∼ Normal(0, Σ)
𝜖𝑖 ⟂⟂ 𝜖𝑗∀𝑖 ≠ 𝑗

We can look back in our notes to see that we have an iterative maximization scheme for this
model:

𝛽(𝑡+1) = (∑
𝑖

𝑋𝑇
𝑖 (Σ(𝑡))−1𝑋𝑖)

−1

∑
𝑖

𝑋𝑇
𝑖 (Σ(𝑡))−1𝑦𝑖

and
Σ(𝑡+1) = 1

𝑛 ∑
𝑖

(𝑦𝑖 − 𝑋𝑖𝛽(𝑡+1))(𝑦𝑖 − 𝑋𝑖𝛽(𝑡+1))𝑇
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Each step of the conditional maximization increased the complete data likelihood:
ℓ𝑌 (𝛽𝑡+1, Σ𝑡 ∣ 𝑌 ) ≥ ℓ𝑌 (𝛽𝑡, Σ𝑡 ∣ 𝑌 )

ℓ𝑌 (𝛽𝑡+1, Σ𝑡+1 ∣ 𝑌 ) ≥ ℓ𝑌 (𝛽𝑡+1, Σ𝑡 ∣ 𝑌 )
Thus, if we had missing outcome data in our regression, we could run an ECM algorithm
with the following steps:

1. Initialize with 𝛽1, Σ1

2. For 𝑡 = 2, … compute

a. Find the conditional expectations: 𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝑋, 𝛽𝑡, Σ𝑡], 𝔼 [𝑦𝑖𝑦𝑇
𝑖 ∣ 𝑌(0), 𝑋, 𝛽𝑡, Σ𝑡]

b. Set 𝛽𝑡+1 to:

𝛽(𝑡+1) = (∑
𝑖

𝑋𝑇
𝑖 (Σ(𝑡))−1𝑋𝑖)

−1

∑
𝑖

𝑋𝑇
𝑖 (Σ(𝑡))−1𝔼 [𝑦𝑖 ∣ 𝑌(0), 𝑋, 𝛽𝑡, Σ𝑡]

c. Set Σ𝑡+1 to:

Σ(𝑡+1) = 1
𝑛 ∑

𝑖
𝔼 [(𝑦𝑖 − 𝑋𝑖𝛽(𝑡+1))(𝑦𝑖 − 𝑋𝑖𝛽(𝑡+1))𝑇 ∣ 𝑌(0), 𝑋, 𝛽𝑡, Σ𝑡]

d. If 𝑄(𝜃𝑡+1 ∣ 𝜃𝑡) − 𝑄(𝜃𝑡 ∣ 𝜃𝑡) ≥ 𝜖, continue, otherwise end

Monte Carlo EM

Monte Carlo EM (MCEM) algorithms can be used when the conditional expectation is not
possible to do analytically. That is, if we cannot do this integral:

𝑄(𝜃 ∣ 𝜃(𝑡)) = ∫
Y(1)

ℓ𝑌 (𝜃 ∣ 𝑌(0) = ̃𝑦(0), 𝑌(1) = 𝑦(1))𝑓(𝑌(1) = 𝑦(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃(𝑡))𝑑𝑦(1)

we can instead approximate it with a Monte Carlo estimator. Assuming we can draw samples
from 𝑦𝑠

(1) ∼ 𝑓(𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃(𝑡)), we can compute:

𝑄̂(𝜃 ∣ 𝜃(𝑡)) = 1
𝑆

𝑆
∑
𝑠=1

ℓ𝑌 (𝜃 ∣ 𝑌(0) = ̃𝑦(0), 𝑌(1) = 𝑦𝑠
(1))

which we know:
lim

𝑆→∞
𝑄̂(𝜃 ∣ 𝜃(𝑡)) = 𝑄(𝜃 ∣ 𝜃(𝑡))

This change in the algorithm isn’t without its complications, because we now have to deter-
mine how to measure convergence. While it is true that 𝑄(𝜃(𝑡+1) ∣ 𝜃(𝑡)) ≥ 𝑄(𝜃(𝑡) ∣ 𝜃(𝑡)), we
now have to contend with the fact that there is noise in our assessment of convergence, so
we need something more like:

𝑃(𝑄̂(𝜃(𝑡+1) ∣ 𝜃(𝑡)) − 𝑄̂(𝜃(𝑡) ∣ 𝜃(𝑡)) ≥ 𝜖)
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