Missing data lecture 12:
Missing-not-at-random

MNAR missingness

The past few lectures have assumed that we have had ignorable missingness, so that inferences
under:
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were equivalent to inferences under
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This was true as long as # and ¢ were variationally independent, and that our missingness
process was MAR:
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for any two y(y), y(*l) for all ¢.
If instead we have MNAR missingness:

P(M =m | Yo = Y0), Ya) =Yy, ¢) # P(M = | Yio) = §0), Y1) = ¥1): ¢)
for some yy), y(*l) such that y ) # yz*l) and some ¢, the inferences won’t be the same.

MAR is often a very strong assumption. For example, suppose we are running a survey that
includes the question: “How many cigarettes have you smoked in the last month?” Given
the social attitudes around smoking, it might not be reasonable to assume that P(M =1 |
y; =100,¢) = P(M =1]y; =0,9).

Unfortunately, for us there are problems when our data are MNAR. For all but several special
classes of models, we won’t be able to identify the parameters of the missingness mechanism.
That means that no matter how many observations we have we will never be able to learn
some subset of the ¢ parameters with any certainty. This stands in contrast to most of

the models we are used to working with. Formally, identifiability of a parametric model is
defined as in Rothenberg (1971):



Definition 1. Let § € © be a parameter indexing a parametric density function f(y | 8). 0
is identifiable if there does not exist a parameter value 8" € ©,60" # 6 for which the density
f(y|8)= f(y|0") for all observations y.

A simple example of nonidentifiability is the following model:

y; ~ Normal(1 + 1, o)
Any pair (u,n) and (p',n") such that ¢ = p+n = p’ +n’ will lead to the same observational
density. In this problem we would say that p and n are nonidentifable or unidentifiable.

In our case, if our data are independent and y; is one-dimensional, we can identify P(M, =
0] y;,®), but not P(M, =1 |y;,¢), except in special cases, which we’ll talk about later.

Approaches to modeling MNAR data: Pattern-mixture and selection
models

Because we can’t separate inference on 6 from the missingness process, we’ll need to use a
joint model for Y, M. That entails some decomposition of P(M = m, Y0y = Yo Y1) =

Ya) | 0,@5)

The most straightforward decomposition is the one we used above, which is called a selection
model:

fy Yoy = Y0y, Yy = vy | OO P(M =m | Yoy = y0), Y1) = Y1) ®)

For now, we will assume that our units are independent conditional on a fully-observed
covariate that varies with unit, so we’ll focus on

fy( = (0),Y(1:y1|X:a:H)P(M:m|Y(0):y(0),Y()_y< X=ux0)=
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A different decomposition is called the pattern-mixture model:

Fy Yoy =90, Yy =ya) | M =m,§)P(M =m | w)

which, under an independence assumption, with a covariate x; paired with each observation
simplifies:

ny 0) = Yi(o Y() Yi(1) | M; =my, X; = 2, OP(M; =m; | X; = z;,w)



Example: Univariate nonresponse

Continuing with our example above, let’s suppose that in addition answers to the how many
cigarettes in the past month question, we have age data for each respondent, as well as
state of residence. Let y,; represent age of respondent 7, and let y,, be how many cigarettes
individual ¢ smoked in the past month, and let x; be state of residence for each respondent.
Suppose that we have arranged our data such that respondents ¢ = 1,...,r have complete
data, whereas for ¢ = r + 1, ..., n, respondents are missing ;5.

The pattern mixture likelihood for this dataset would take the form:
fy (M =m, Yio) = Y0 Y1) =¥ | X =x,§) = ny(yn,yiz | m; = 0,2, )P(m; =0 | z;,w)
i=1
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Under MAR, we have that

fyWio 1 i my = L,2,,8) = fy (Yo | Y31, my = 0,24, €)

which identifies the joint distribution of v,;,¥,;, for nonrespondents. For MNAR, the distri-
bution fy (y;5 | ¥;1, m; = 1, z;,€) is that which is unknown.

The selection model approach to this is
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You can see the appeal of pattern-mixture models from the two formulations: The pattern
mixture model doesn’t involve integrals of the missingness mechanism against an unknown
density, and it is clear where the information is missing, namely

Identified selection models
Heckman selection model

If we're willing to assume a specific distribution for (y,5,m;) | v;1, we can have iden-
tifiability of selection models. One choice is the following latent variable model, where



Yio = 2] B+ ay;; + o€,
Z; =31y + Gy T €0
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where

If p£0, m; UL y;5]|y;;- To see why:
P
2 | Yig ~ Normal(z]y + ¢y, + g(yz‘z — (2] B+ ay;y)),1—p?)

This means that the likelihood for someone with m; = 0 is:

xl~ 4+ ALy — (2T B+ ay;
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Then the likelihood for someone with missing observations of y;, is:
Fy(yin |24, 0) (1 — @ (zf7 + é19:1))

The conditional formulation makes it clear that this model is equivalent to the following
model:

y;1 ~ Normal(z] 8 + ay;y,0°)
P(m; =1|y;) = ®(xly + 1y + dovin)
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