
Missing data lecture 13: Identified and
nonidentified models for MNAR data

Selection models with exclusion restrictions

We mentioned last time that the following model:

𝑦𝑖1 ∼ Normal(𝑥𝑇
𝑖 𝛽, 𝜎2)

𝑃 (𝑚𝑖 = 1 ∣ 𝑦𝑖1) = Φ(𝑥𝑇
𝑖 𝛾 + 𝜙2𝑦𝑖1)

was identified only by the implied joint normality of the errors in the equivalent model:

𝑦𝑖1 = 𝑥𝑇
𝑖 𝛽 + 𝜎𝜖𝑖1

𝑧𝑖 = 𝑥𝑇
𝑖 𝛾′ + 𝜖𝑖2

(𝜖𝑖1, 𝜖𝑖2) ∼ Normal (0, [1 𝜌
𝜌 1])

𝑚𝑖 = 1 (𝑧𝑖 > 0)
Why is this the case that identification follows from the normality assumption?

The standard procedure for estimating these models is via a two step procedure:

1. Fit a probit model to the missingness indicators to learn 𝛾′.

2. Fit a linear regression model for 𝑦𝑖1 on 𝑥𝑖 and the conditional expectation of 𝑧𝑖 ∣ 𝑧𝑖 < 0,
which we get from the probit model.

Let’s look at the conditional expectation of 𝑦𝑖1 ∣ 𝑧𝑖 given 𝑧𝑖 < 0. We know the conditional
expectation of 𝑦𝑖1 ∣ 𝑧𝑖 = 𝑧:

𝑥𝑇
𝑖 𝛽 + 𝜌𝜎(𝑧𝑖 − 𝑥𝑇

𝑖 𝛾′)
What is the conditional expectation of 𝑧 ∣ 𝑧 < 0? This is called the inverse Mills ratio:

𝔼 [𝑧 ∣ 𝑧 < 0] = 𝑥𝑇
𝑖 𝛾′ − 𝜙(−𝑥𝑇

𝑖 𝛾′)
Φ(−𝑥𝑇

𝑖 𝛾′)
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Plugging this in above gives:

𝑥𝑇
𝑖 𝛽 − 𝜌𝜎 𝜙(−𝑥𝑇

𝑖 𝛾′)
Φ(−𝑥𝑇

𝑖 𝛾′)

Thus, this is design matrix for the model we would fit to the units in which 𝑦𝑖1 is observed:

⎡
⎢⎢
⎣

𝑥𝑇
1 𝜙(−𝑥𝑇

1 ̂𝛾′)/Φ(−𝑥𝑇
1 ̂𝛾′)

𝑥𝑇
2 𝜙(−𝑥𝑇

2 ̂𝛾′)/Φ(−𝑥𝑇
2 ̂𝛾′)

⋮ ⋮
𝑥𝑇

𝑛 𝜙(−𝑥𝑇
𝑛 ̂𝛾′)/Φ(−𝑥𝑇

𝑛 ̂𝛾′)

⎤
⎥⎥
⎦

To the extent that the function 𝜙(⋅)/Φ(⋅), which is called the inverse Mills ratio, is linear in
its arguments, this extra term in the regression will be collinear with 𝑥𝑇

𝑖 𝛽 and the parameter
𝜌 won’t be well-identified. Let’s plot the function to see what it looks like:
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Thus, the regression for 𝑦𝑖1 on 𝑥𝑖 and the Inverse Mills Ratio in the selected units is identified
solely by the shape of the Inverse Mills ratio.

If we can write the model instead like:

𝑦𝑖1 ∼ Normal(𝑥𝑇
𝑖 𝛽, 𝜎2)

𝑃 (𝑚𝑖 = 1 ∣ 𝑦𝑖1) = Φ(𝑥𝑇
𝑖 𝛾 + 𝑤𝑇

𝑖 𝜓 + 𝜙2𝑦𝑖1),

the point estimates for 𝛽 are more robust to deviations from the normality assumption. The
reason for this is from above: we have another source of variation in the inverse Mills ratio,
so the term won’t be collinear with the predictors in the 𝑦𝑖1 ∣ 𝑧𝑖 regression.

Here’s an example from our textbook where the study design makes it possible to exclude
the 𝑤𝑖 from the model for 𝑦𝑖1.
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Example 1. Estimating HIV incidence via household surveys @janssens2014refusal analyzes
data from a survey designed to infer population level incidence of HIV in Namibia. In this
study, the researchers estimated population-level HIV incidence by sending a nurse to ran-
domly selected households, and interviewing the household participants about demographic
information, attitudes towards HIV and prevention. The nurse also would take a saliva sam-
ple to assess HIV status. As with any survey, there were respondents who declined to give
a saliva sample, and there was concern that propensity to refuse to give a sample is related
to HIV status. Crucially, the study design randomly assigned nurses to households. The
model the researchers would like to fit is the following:

𝑃(𝑦𝑖1 = 1) = Φ(𝑥𝑇
𝑖 𝛽, 𝜎2)

𝑃 (𝑚𝑖 = 1 ∣ 𝑦𝑖1) = Φ(𝑥𝑇
𝑖 𝛾 + 𝑤𝑇

𝑖 𝜓 + 𝜙2𝑦𝑖1),

where 𝑥𝑖 are sociodemographic variables, while 𝑤𝑖 is vector of dummy variables corresponding
to nurse ID. Because nurses were randomly assigned, it is plausible that nurse ID does not
affect HIV status, but could impact the probability of refusing to give a sample.

The model can be formulated as a latent bivariate normal model:

𝑧𝑖1 = 𝑥𝑇
𝑖 𝛽 + 𝜖𝑖1

𝑧𝑖2 = 𝑥𝑇
𝑖 𝛾′ + 𝑤𝑇

𝑖 𝜓′ + 𝜖𝑖2

(𝜖𝑖1, 𝜖𝑖2) ∼ Normal (0, [1 𝜌
𝜌 1])

𝑦𝑖1 = 1 (𝑧𝑖1 ≥ 0) ,
𝑚𝑖 = 1 (𝑧𝑖2 ≥ 0)

If 𝜓 ≠ 0, the model is robust to deviations from the joint latent normality assumption. The
plausibility of the

The probability of each outcome is as follows, where we let 𝜇𝑌
𝑖 = 𝑥𝑇

𝑖 𝛽 and 𝜇𝑀
𝑖 = 𝑥𝑇

𝑖 𝛾′+𝑤𝑇
𝑖 𝜓′:

𝑃(𝑦𝑖1 = 0, 𝑚𝑖 = 0) = 𝑃(𝜇𝑌
𝑖 + 𝜖𝑖1 < 0, 𝜇𝑀

𝑖 + 𝜖𝑖2 < 0)
𝑃(𝑦𝑖1 = 1, 𝑚𝑖 = 0) = 𝑃(𝜇𝑌

𝑖 + 𝜖𝑖1 ≥ 0, 𝜇𝑀
𝑖 + 𝜖𝑖2 < 0)

𝑃(𝑦𝑖1 = 0, 𝑚𝑖 = 1) = 𝑃(𝜇𝑌
𝑖 + 𝜖𝑖1 < 0, 𝜇𝑀

𝑖 + 𝜖𝑖2 ≥ 0)
𝑃(𝑦𝑖1 = 1, 𝑚𝑖 = 1) = 𝑃(𝜇𝑌

𝑖 + 𝜖𝑖1 ≥ 0, 𝜇𝑀
𝑖 + 𝜖𝑖2 ≥ 0)

This expression can be written in terms of the bivariate normal CDF: Φ(𝑎, 𝑏, 𝜌), which equals
𝑃(Z1 ≤ 𝑎,Z2 ≤ 𝑏), where Z1,Z2 are bivariate normal with mean zero, standard deviations
1, and correlation 𝜌:

𝑃(𝑦𝑖1 = 0, 𝑚𝑖 = 0) = 𝑃(𝜇𝑌
𝑖 + 𝜖𝑖1 < 0, 𝜇𝑀

𝑖 + 𝜖𝑖2 < 0)
= 𝑃(𝜖𝑖1 < −𝜇𝑌

𝑖 , 𝜖𝑖2 < −𝜇𝑀
𝑖 )

= Φ(−𝜇𝑌
𝑖 , −𝜇𝑀

𝑖 , 𝜌)
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Also note that if Z1,Z2 are bivariate normal with correlation 𝜌, then (−Z1,Z2) are bivariate
normal with correlation −𝜌. Then

𝑃(𝑦𝑖1 = 1, 𝑚𝑖 = 0) = 𝑃(𝜇𝑌
𝑖 + 𝜖𝑖1 ≥ 0, 𝜇𝑀

𝑖 + 𝜖𝑖2 < 0)
= 𝑃(𝜖𝑖1 > −𝜇𝑌

𝑖 , 𝜖𝑖2 < −𝜇𝑀
𝑖 )

= 𝑃(−𝜖𝑖1 < 𝜇𝑌
𝑖 , 𝜖𝑖2 < −𝜇𝑀

𝑖 )
= Φ(𝜇𝑌

𝑖 , −𝜇𝑀
𝑖 , −𝜌)

All of these events are written

𝑃(𝑦𝑖1 = 0, 𝑚𝑖 = 0) = Φ(−𝜇𝑌
𝑖 , −𝜇𝑀

𝑖 , 𝜌)
𝑃 (𝑦𝑖1 = 1, 𝑚𝑖 = 0) = Φ(𝜇𝑌

𝑖 , −𝜇𝑀
𝑖 , −𝜌)

𝑃(𝑦𝑖1 = 0, 𝑚𝑖 = 1) = Φ(−𝜇𝑌
𝑖 , 𝜇𝑀

𝑖 , −𝜌)
𝑃(𝑦𝑖1 = 1, 𝑚𝑖 = 1) = Φ(𝜇𝑌

𝑖 , 𝜇𝑀
𝑖 , 𝜌)

This model is called the bivariate probit model, and you will fit this model in Stan for the
next HW to a similar dataset.

The researchers found that incidence estimates for differet subgroups could be impacted by
refusal bias, so it was necessary to perform this adjustment.

There is another bivariate normal model that is identified by exclusion restrictions.

Example 2. Bivariate Normal pattern-mixture model Imagine we’re running a household
survey on income, so we can observe the address at which someone lives, but we might not
learn household income due to refusals.

Let 𝑌𝑖1 be the log-household value, which we obtain from Zillow, or from property tax
assessments, and 𝑌𝑖2 be the log of the response to a question about household income on a
survey. Let 𝑀𝑖 = 1 when 𝑌𝑖2 is missing and 0 when it is observed. Let 𝑖 = 1, … , 𝑟 be the
cases for which we have observed log-income, and let 𝑖 = 𝑟 + 1, … , 𝑛 be the observations
that are missing log-income. We assume that we have log-houshold value for all survey
respondents.

We can use the pattern-mixture model for this scenario:

𝐿(𝜇, Σ ∣ 𝑌(0) = ̃𝑦(0), 𝑀 = �̃�) =
𝑟

∏
𝑖=1

(1 − 𝜔)N(𝑦𝑖1, 𝑦𝑖1 ∣, 𝑚𝑖 = 0, 𝜇0, Σ0)

×
𝑛

∏
𝑖=𝑟+1

𝜔N(𝑦𝑖1 ∣ 𝑚𝑖 = 1, 𝜇1, 𝜎2
1)

We’ll suppose that the missingness mechanism has the following form:

𝑃(𝑀𝑖 = 1 ∣ 𝑌𝑖1 = 𝑦𝑖1, 𝑌𝑖1 = 𝑦𝑖2) = 𝑃(𝑀𝑖 = 1 ∣ 𝑌𝑖1 = 𝑦𝑖2).
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We would like to learn the following marginal expection for 𝑦𝑖2:

𝔼 [𝑌𝑖2] = 𝔼 [𝑌𝑖2 ∣ 𝑀𝑖 = 0] (1 − 𝜔) + 𝔼 [𝑌𝑖2 ∣ 𝑀𝑖 = 1] 𝜔

where we can’t calculate 𝔼 [𝑌𝑖2 ∣ 𝑀𝑖 = 1] directly. However, we can use the fact that the
missingness mechanism does not depend on 𝑦𝑖1 to identify our model.

𝑓𝑌 (𝑦𝑖1 = 𝑦 ∣ 𝑌𝑖2 = 𝑦𝑖2, 𝑀𝑖 = 𝑚) = 𝑓𝑌 (𝑦𝑖1 = 𝑦 ∣ 𝑌𝑖2 = 𝑦𝑖2)𝑃 (𝑀𝑖 = 𝑚 ∣ 𝑦𝑖1 = 𝑦, 𝑌𝑖2 = 𝑦𝑖2)
𝑃 (𝑀𝑖 = 𝑚 ∣ 𝑌𝑖2 = 𝑦𝑖2)

= 𝑓𝑌 (𝑦𝑖1 = 𝑦 ∣ 𝑌𝑖2 = 𝑦𝑖2)𝑃 (𝑀𝑖 = 𝑚 ∣ 𝑌𝑖2 = 𝑦𝑖2)
𝑃 (𝑀𝑖 = 𝑚 ∣ 𝑌𝑖2 = 𝑦𝑖2)

= 𝑓𝑌 (𝑦𝑖1 = 𝑦 ∣ 𝑌𝑖2 = 𝑦𝑖2)

This means that the following holds:

𝑓𝑌 (𝑦𝑖1 = 𝑦 ∣ 𝑌𝑖2 = 𝑦𝑖2, 𝑀𝑖 = 1) = 𝑓𝑌 (𝑦𝑖1 = 𝑦 ∣ 𝑌𝑖2 = 𝑦𝑖2, 𝑀𝑖 = 0)

This means that we can infer the joint distribution of 𝑌𝑖2, 𝑌𝑖1 for 𝑀𝑖 = 1 if the joint normality
assumption holds. It comes from the following observation. Let 𝛽(0)

10⋅2 𝛽(0)
12⋅2 be the intercept

and slope from the regression of 𝑦𝑖1 on 𝑦𝑖2 in the complete units.

𝜇(0)
1 = 𝛽(0)

10⋅2 + 𝛽(0)
12⋅2𝜇(0)

2

Using the assumption that 𝛽(1)
10⋅2 = 𝛽(0)

10⋅2 𝛽(1)
12⋅2 = 𝛽(0)

12⋅2 gives us the following relationship:

𝜇(1)
1 = 𝛽(0)

10⋅2 + 𝛽(0)
12⋅2𝜇(1)

2

Then we can solve for 𝜇(1)
2 :

𝜇(1)
2 = 𝜇(1)

1 − 𝛽(0)
10⋅2

𝛽(0)
12⋅2

We observe 𝜇(1)
1 , and have an MLE of ̄𝑦(1)

1 and the MLEs for

̂𝛽(0)
10⋅2 = ̄𝑦(0)

1 − 𝑠12
𝑠22

̄𝑦(0)
2 , ̂𝛽(0)

12⋅2 = 𝑠12
𝑠22

Thus we get the following MLE for the mean for 𝑦𝑖2 in the missing units:

̂𝜇(1)
2 = ̄𝑦(0)

2 + ̄𝑦(1)
1 − ̄𝑦(0)

1
𝑠12
𝑠22
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