
Missing data lecture 14: Nonidentified
models for MNAR data

Identifiability of selection models

We mentioned last time that the following model:

𝑦𝑖1 ∼ Normal(𝑥𝑇
𝑖 𝛽, 𝜎2)

𝑃 (𝑚𝑖 = 1 ∣ 𝑦𝑖1) = Φ(𝑥𝑇
𝑖 𝛾 + 𝜙2𝑦𝑖1)

was identified only by the implied joint normality of the errors in the equivalent model:

𝑦𝑖1 = 𝑥𝑇
𝑖 𝛽 + 𝜎𝜖𝑖1

𝑧𝑖 = 𝑥𝑇
𝑖 𝛾′ + 𝜖𝑖2

(𝜖𝑖1, 𝜖𝑖2) ∼ Normal (0, [1 𝜌
𝜌 1])

𝑚𝑖 = 1 (𝑧𝑖 > 0)
Why is this the case that identification follows from the normality assumption?

The standard procedure for estimating these models is via a two step procedure:

1. Fit a probit model to the missingness indicators to learn 𝛾′.

2. Fit a linear regression model for 𝑦𝑖1 on 𝑥𝑖 and the conditional expectation of 𝑧𝑖 ∣ 𝑧𝑖 < 0,
which we get from the probit model.

Let’s look at the conditional expectation of 𝑦𝑖1 ∣ 𝑧𝑖 given 𝑧𝑖 < 0. We know the conditional
expectation of 𝑦𝑖1 ∣ 𝑧𝑖 = 𝑧:

𝑥𝑇
𝑖 𝛽 + 𝜌𝜎(𝑧𝑖 − 𝑥𝑇

𝑖 𝛾′)
What is the conditional expectation of 𝑧 ∣ 𝑧 < 0? This is called the inverse Mills ratio:

𝔼 [𝑧 ∣ 𝑧 < 0] = 𝑥𝑇
𝑖 𝛾′ − 𝜙(−𝑥𝑇

𝑖 𝛾′)
Φ(−𝑥𝑇

𝑖 𝛾′)
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Plugging this in above gives:

𝑥𝑇
𝑖 𝛽 − 𝜌𝜎 𝜙(−𝑥𝑇

𝑖 𝛾′)
Φ(−𝑥𝑇

𝑖 𝛾′)

Thus, this is design matrix for the model we would fit to the units in which 𝑦𝑖1 is observed:

⎡
⎢⎢
⎣

𝑥𝑇
1 𝜙(−𝑥𝑇

1 ̂𝛾′)/Φ(−𝑥𝑇
1 ̂𝛾′)

𝑥𝑇
2 𝜙(−𝑥𝑇

2 ̂𝛾′)/Φ(−𝑥𝑇
2 ̂𝛾′)

⋮ ⋮
𝑥𝑇

𝑛 𝜙(−𝑥𝑇
𝑛 ̂𝛾′)/Φ(−𝑥𝑇

𝑛 ̂𝛾′)

⎤
⎥⎥
⎦

To the extent that the function 𝜙(⋅)/Φ(⋅), which is called the inverse Mills ratio, is linear in
its arguments, this extra term in the regression will be collinear with 𝑥𝑇

𝑖 𝛽 and the parameter
𝜌 won’t be well-identified. Let’s plot the function to see what it looks like:
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Thus, the regression for 𝑦𝑖1 on 𝑥𝑖 and the Inverse Mills Ratio in the selected units is identified
solely by the shape of the Inverse Mills ratio.

If we can write the model instead like:

𝑦𝑖1 ∼ Normal(𝑥𝑇
𝑖 𝛽, 𝜎2)

𝑃 (𝑚𝑖 = 1 ∣ 𝑦𝑖1) = Φ(𝑥𝑇
𝑖 𝛾 + 𝑤𝑇

𝑖 𝜓 + 𝜙2𝑦𝑖1),

the point estimates for 𝛽 are more robust to deviations from the normality assumption. The
reason for this is from above: we have another source of variation in the inverse Mills ratio,
so the term won’t be collinear with the predictors in the 𝑦𝑖1 ∣ 𝑧𝑖 regression.

There is another bivariate normal model that is identified by exclusion restrictions.

Example 1. Sensitivity analysis for pattern-mixture models Imagine we’re running a house-
hold survey on income, so we can observe the address at which someone lives, but we might
not learn household income due to refusals.
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Let 𝑌𝑖1 be the log-household value, which we obtain from Zillow, or from property tax
assessments, and 𝑌𝑖2 be the log of the response to a question about household income on a
survey. Let 𝑀𝑖 = 1 when 𝑌𝑖2 is missing and 0 when it is observed. Let 𝑖 = 1, … , 𝑟 be the
cases for which we have observed log-income, and let 𝑖 = 𝑟 + 1, … , 𝑛 be the observations
that are missing log-income. We assume that we have log-houshold value for all survey
respondents.

We can use the pattern-mixture model for this scenario:

𝐿(𝜇, Σ ∣ 𝑌(0) = ̃𝑦(0), 𝑀 = 𝑚̃) =
𝑟

∏
𝑖=1

(1 − 𝜔)N(𝑦𝑖1, 𝑦𝑖1 ∣, 𝑚𝑖 = 0, 𝜇0, Σ0)

×
𝑛

∏
𝑖=𝑟+1

𝜔N(𝑦𝑖1 ∣ 𝑚𝑖 = 1, 𝜇1, 𝜎2
1)

We’ll suppose that we can construct a variable 𝑌 ⋆
𝑖2 = 𝑌𝑖1 + 𝜆𝑌𝑖2, and that missingness

depends only on 𝑌 ⋆
𝑖2: We’ll suppose that the missingness mechanism has the following form:

𝑃 (𝑀𝑖 = 1 ∣ 𝑌𝑖1 = 𝑦𝑖1, 𝑌 ⋆
𝑖2 = 𝑦⋆

𝑖2, 𝜙) = 𝑃(𝑀𝑖 = 1 ∣ 𝑌 ⋆
𝑖2 = 𝑦⋆

𝑖2, 𝜙).

We would like to learn the following marginal expection for 𝑦𝑖2:

𝔼 [𝑌𝑖2] = 𝔼 [𝑌𝑖2 ∣ 𝑀𝑖 = 0] (1 − 𝜔) + 𝔼 [𝑌𝑖2 ∣ 𝑀𝑖 = 1] 𝜔

where we can’t calculate 𝔼 [𝑌𝑖2 ∣ 𝑀𝑖 = 1] directly. However, we can use the fact that the
missingness mechanism does not depend on 𝑦𝑖1 to identify our model.

𝑓𝑌 (𝑦𝑖1 = 𝑦 ∣ 𝑌 ⋆
𝑖2 = 𝑦⋆

𝑖2, 𝑀𝑖 = 𝑚) = 𝑓𝑌 (𝑦𝑖1 = 𝑦 ∣ 𝑌 ⋆
𝑖2 = 𝑦⋆

𝑖2)𝑃 (𝑀𝑖 = 𝑚 ∣ 𝑦𝑖1 = 𝑦, 𝑌 ⋆
𝑖2 = 𝑦⋆

𝑖2)
𝑃 (𝑀𝑖 = 𝑚 ∣ 𝑌 ⋆

𝑖2 = 𝑦⋆
𝑖2)

= 𝑓𝑌 (𝑦𝑖1 = 𝑦 ∣ 𝑌 ⋆
𝑖2 = 𝑦⋆

𝑖2)𝑃 (𝑀𝑖 = 𝑚 ∣ 𝑌 ⋆
𝑖2 = 𝑦⋆

𝑖2)
𝑃 (𝑀𝑖 = 𝑚 ∣ 𝑌 ⋆

𝑖2 = 𝑦⋆
𝑖2)

= 𝑓𝑌 (𝑦𝑖1 = 𝑦 ∣ 𝑌 ⋆
𝑖2 = 𝑦⋆

𝑖2)

This means that the following holds:

𝑓𝑌 (𝑦𝑖1 = 𝑦 ∣ 𝑌 ⋆
𝑖2 = 𝑦⋆

𝑖2, 𝑀𝑖 = 1) = 𝑓𝑌 (𝑦𝑖1 = 𝑦 ∣ 𝑌 ⋆
𝑖2 = 𝑦⋆

𝑖2, 𝑀𝑖 = 0)

This means that we can infer the joint distribution of 𝑌𝑖2, 𝑌𝑖1 for 𝑀𝑖 = 1 if the joint normality
assumption holds. Some more algebra akin to the algebra in Lecture 13 leads to an expression
of 𝜇(

20):
( ̂𝜇2)(1) = ̄𝑦(0)

2 + 𝜆𝑠22 + 𝑠12
𝜆𝑠12 + 𝑠11

( ̄𝑦(1)
1 − ̄𝑦(0)

1 )
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