Missing data lecture 14: Nonidentified
models for MNAR data

Identifiability of selection models

We mentioned last time that the following model:

Y1 ~ Normal(z 8, 0?)
P(m; =1|y;;) = ®(zly + doy;y)

was identified only by the implied joint normality of the errors in the equivalent model:
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Why is this the case that identification follows from the normality assumption?

The standard procedure for estimating these models is via a two step procedure:

1. Fit a probit model to the missingness indicators to learn +’.

2. Fit a linear regression model for y;; on x,; and the conditional expectation of z; | z; < 0,
which we get from the probit model.

Let’s look at the conditional expectation of y;; | z; given z; < 0. We know the conditional
expectation of y,; | z; = 2:
zi B+ po(z —xiv)

What is the conditional expectation of z | z < 07 This is called the inverse Mills ratio:

o=z

E 0] = 2T —
212 <0]=afy — S0

7
7



Plugging this in above gives:
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Thus, this is design matrix for the model we would fit to the units in which y,; is observed:
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To the extent that the function ¢(-)/®(-), which is called the inverse Mills ratio, is linear in

its arguments, this extra term in the regression will be collinear with 21 3 and the parameter
p won’t be well-identified. Let’s plot the function to see what it looks like:
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Thus, the regression for y,; on z; and the Inverse Mills Ratio in the selected units is identified
solely by the shape of the Inverse Mills ratio.

If we can write the model instead like:
yi1 ~ Normal(z] 8, 0?)
P(m; =1]y;;) = @]y +wl+ dyy;1),

the point estimates for 8 are more robust to deviations from the normality assumption. The
reason for this is from above: we have another source of variation in the inverse Mills ratio,
so the term won’t be collinear with the predictors in the y,; | #; regression.

There is another bivariate normal model that is identified by exclusion restrictions.
Example 1. Sensitivity analysis for pattern-mixture models Imagine we're running a house-

hold survey on income, so we can observe the address at which someone lives, but we might
not learn household income due to refusals.



Let Y;; be the log-household value, which we obtain from Zillow, or from property tax
assessments, and Y, be the log of the response to a question about household income on a
survey. Let M, = 1 when Y}, is missing and 0 when it is observed. Let ¢ = 1,...,7 be the
cases for which we have observed log-income, and let ¢ = r 4+ 1,...,n be the observations
that are missing log-income. We assume that we have log-houshold value for all survey
respondents.

We can use the pattern-mixture model for this scenario:
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We'll suppose that we can construct a variable Y5 = Y,;; + AY},, and that missingness

depends only on Y7: We'll suppose that the missingness mechanism has the following form:
P(M; =1|Y; =y, Y5 = yis,0) = P(M; = 1| Y5 = 455, ¢).
We would like to learn the following marginal expection for y,5:
E[Yi] =E[Yi [ M; =0](1 —w) + E[Y;; [ M; = 1w

where we can’t calculate E[Y;o | M; = 1] directly. However, we can use the fact that the
missingness mechanism does not depend on y;; to identify our model.
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This means that the following holds:
fyWa =yl Y5 =y, M;=1)= fy(ya =y | Vi =yj, M; =0)

This means that we can infer the joint distribution of Y},, Y;; for M, = 1 if the joint normality
assumption holds. Some more algebra akin to the algebra in Lecture 13 leads to an expression
of u(QO):
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