
Missing data lecture 15: Imputation
methods

Imputation of missing data

We’ve covered why imputing each data point with a single value is wrong. Just to review,
this is akin to maximizing the likelihood function:

𝐿(𝜃, 𝑦(1) ∣ 𝑌(0) = ̃𝑦(0))
Instead of the correct:

𝐿(𝜃 ∣ 𝑌(0) = ̃𝑦(0)) ∝ ∫
Y(1)

𝑓𝑌 (𝑌(0) = ̃𝑦(0), 𝑌(1) = 𝑦(1) ∣ 𝜃)𝑑𝑦(1)

We covered two examples in lecture 10. In one example, the 𝑦𝑖, 𝑖 = 1, … , 𝑛 were normally
distributed with unknown mean 𝜇 and variance 𝜎2 where we imputed ̄𝑦 for 𝑛 − 𝑟 missing
data points; this led to a mean estimator that matched the mean estimator which maximized
𝐿(𝜇, 𝜎2 ∣ 𝑌(0) = ̃𝑦(0)), but a biased and inconsistent variance estimator of 𝜎̂2 = ∑𝑟

𝑖=1(𝑦𝑖 −
̄𝑦)/𝑛.

In another, we had 𝑦𝑖, 𝑖 = 1, … , 𝑛 exponentially distributed with unknown rate 𝜆 that were
censored at a specified time 𝑐. Maximizing 𝐿(𝜆, 𝑦(1) ∣ 𝑌(0) = ̃𝑦(0)) led to a biased and
inconsistent estimator for 𝜆:

𝜆̂ = (∑𝑟
𝑖=1 𝑦𝑖 + (𝑛 − 𝑟)𝑐)/𝑛

which, when divided by the correct estimator, was off by a factor of 𝑟/𝑛. If you had a
sample where 80% of your observations were censored, your estimate would be 20% of the
true estimator.

The key idea is that imputing unknown missing values with a deterministic value will lead to
biased, inconsistent estimators. This is true when you’re using likelihood-based inference or
other inference techniques. This is because we’re using a strategy that ignores the variability
inherent in these imputations.

An alternative is to fill in values of 𝑦(1) with random draws from a distribution. Which
distribution you use is dependent on whether the data are MCAR, MAR, or MNAR. One
way to think about this is via approximate Bayesian modeling.
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Stochastic imputation

Suppose we have a model 𝑓𝑌 (𝑌 = 𝑦 ∣ 𝜃) which we can rewrite as 𝑓𝑌 (𝑌(0) = 𝑦(0), 𝑌(1) =
𝑦(1) ∣ 𝜃) for a given missing data pattern. We’ll assume our missingness process is ignorable,
which means we’re in an MCAR or a MAR setting. If we want to compute the posterior for
𝜃 under a prior 𝑝(𝜃) and our likelihood 𝑓𝑌 (𝑌(0) = 𝑦(0), 𝑌(1) = 𝑦(1) ∣ 𝜃), the posterior is:

𝑝(𝜃 ∣ 𝑌(0) = ̃𝑦(0)) = ∫
Y(1)

𝑝(𝜃, 𝑌(1) = 𝑦(1) ∣ 𝑌(0) = ̃𝑦(0))𝑑𝑦(1)

= ∫
Y(1)

𝑝(𝜃 ∣ 𝑌(1) = 𝑦(1), 𝑌(0) = ̃𝑦(0))𝑓𝑌1∣𝑌0
(𝑌(1) = 𝑦(1) ∣ 𝑌(0) = ̃𝑦(0))𝑑𝑦(1)

This suggests the following approximate scheme:

1. Draw a random set of values 𝑦(𝑠)
(1) from the distribution 𝑌(1) ∣ 𝑌(0) = ̃𝑦(0)

2. Draw a value 𝜃(𝑠) from the posterior 𝑝(𝜃 ∣ 𝑌(1) = 𝑦(𝑠)
(1), 𝑌(0) = ̃𝑦(0))

If we’re instead interested in getting posterior moments, like a mean, we could instead
compute:

𝔼 [𝜃 ∣ 𝑌(1) = 𝑦(𝑠)
(1), 𝑌(0) = ̃𝑦(0)] .

If we’re using a flat prior and we approximate the posterior for 𝜃 ∣ 𝑌(1) = 𝑦(𝑠)
(1), 𝑌(0) = ̃𝑦(0) as

multivariate normal, the approximate value for 𝔼 [𝜃 ∣ 𝑌(1) = 𝑦(𝑠)
(1), 𝑌(0) = ̃𝑦(0)] will be ̂𝜃MLE.

That suggests another approximation to get the posterior mean

1. Draw a random set of values 𝑦(𝑠)
(1) from the distribution 𝑌(1) ∣ 𝑌(0) = ̃𝑦(0)

2. Compute ̂𝜃(𝑠)
MLE from the log-liklehood ℓ(𝜃 ∣ 𝑌(1) = 𝑦(𝑠)

(1), 𝑌(0) = ̃𝑦(0))

3. Compute ̂Cov(𝜃)
(𝑠)

from the log-liklehood ℓ(𝜃 ∣ 𝑌(1) = 𝑦(𝑠)
(1), 𝑌(0) = ̃𝑦(0)) as 𝑖( ̂𝜃(𝑠)

MLE) =
∑𝑛

𝑖=1 −∇2
𝜃ℓ(𝜃 ∣ 𝑌(1) = 𝑦(𝑠)

(1), 𝑌(0) = ̃𝑦(0)) ∣𝜃= ̂𝜃(𝑠)
MLE

4. After running 𝑆 imputations, compute

̄𝜃 = 𝔼 [𝜃 ∣ 𝑌(0) = ̃𝑦(0)] ≈ 1
𝑆

𝑆
∑
𝑠=1

̂𝜃(𝑠)
MLE

Cov(𝜃 ∣ 𝑌(0) = ̃𝑦(0)) ≈ 1
𝑆

𝑆
∑
𝑠=1

𝑖( ̂𝜃(𝑠)
MLE) + 1

𝑆 − 1
𝑆

∑
𝑠=1

( ̂𝜃(𝑠)
MLE − ̄𝜃)( ̂𝜃(𝑠)

MLE − ̄𝜃)𝑇

where the last step comes from the formula for total covariance:

Cov(𝑋 ∣ 𝑍) = 𝔼 [Cov(𝑋 ∣ 𝑌 , 𝑍) ∣ 𝑍] + Cov(𝔼 [𝑋 ∣ 𝑌 , 𝑍] ∣ 𝑍)
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This is all well and good, but the key issue for us is going to be how to generate draws from
the conditional distribution:

𝑌(1) ∣ 𝑌(0) = ̃𝑦(0).
In fact, the above procedure doesn’t have to be run many times, and 𝑆 = 1 is a valid
imputation procedure, though it will have higher variance than if 𝑆 > 1.

Stochastic regression imputation

Suppose we have 𝑝 continuous predictors arranged into an 𝑛 × 𝑝 matrix 𝑋, and a response
variable 𝑦. Let’s say we have one predictor, 𝑋𝑝 that is missing values. Suppose we have the
first 𝑟 rows have no missing values, and the last 𝑛 − 𝑟 values do have missing values.

Then we could run the following regression using the values for the complete units:

𝑋[1∶𝑟,𝑝] = 𝑋[1∶𝑟,1∶(𝑝−1)]𝛽 + 𝑌[1∶𝑟]𝛽𝑦 + 𝜖𝑖𝑝

Then we could fill in the 𝑛 − 𝑟 missing values with the following values:

̂𝑥𝑖𝑝 = 𝛽0 +
𝑝−1
∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗 + 𝛽𝑦𝑦𝑖 + 𝑧𝑖𝑝

where 𝑧𝑖𝑝 is a normal random variable with variance equal to the residual variance in the
regression model above.

This might be odd that we’re including values of the response in the regression for the
missing 𝑋 values. This doesn’t lead to any issues, however. In fact, this would be the exact
distribution we would use in say, an EM algorithm, if all of our data were jointly MV normal
and we were computing the Q step.

Stochastic Hot-Deck imputation

The downside of using regression imputation is that we need a model for imputation. One
alternative is to use the data itself to provide filled-in values for missing data. The simplest
case occurs for univariate missingness: Let 𝑦𝑖 be measurements, of which 𝑟 are observed, and
let the mean be ̄𝑦𝑅. For the missing values of 𝑦𝑖, we draw a simple random sample with
replacement from the donors, which are the completely observed data, {𝑦1, … , 𝑦𝑟}.

The mean of the final dataset is:

̄𝑦HD = 1
𝑛(𝑟 ̄𝑦𝑅 + (𝑛 − 𝑟) ̄𝑦𝐻𝐷)

where ̄𝑦HD = 1
𝑛−𝑟 ∑𝑟

𝑖=1 𝐻𝑖𝑦𝑖 and 𝐻𝑖 represents the number of times the value 𝑦𝑖 is chosen.
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The mean and variance of the hot-deck estimator can be derived from the properties of the
multinomial distribution with sampling proportions 1/𝑟, … , 1/𝑟, which is the distribution
for {𝐻1, … , 𝐻𝑟}:

𝔼 [ ̄𝑦HD ∣ 𝑌(0)] = ̄𝑦𝑅
Var( ̄𝑦HD ∣ 𝑌(0)) = (1 − 𝑟−1)(1 − 𝑟/𝑛)𝑠2

𝑅/𝑛
If one has completely observed covariates 𝑥1, … , 𝑥𝑝 for each 𝑖, you can define a measure of
distance based on the covariates for unit 𝑖 and 𝑗, 𝑑(𝑖, 𝑗) and randomly choose a donor for a
missing unit 𝑖 from pool of donors that have have 𝑑(𝑖, 𝑗) < 𝑑0.

One good approach to this metric is to use something called predictive mean matching,
whereby one fits a regresson to the complete cases, and picks donors for a missing value for
the 𝑖th participant using the metric ( ̂𝑦(𝑥𝑖) − ̂𝑦(𝑥𝑗))2, where ̂𝑦(𝑥) is the predicted mean value
from the complete case regression applied to a predictor vector 𝑥.

Multiple imputation

We still haven’t quite figured out a way to draw from this distribution

𝑌(1) ∣ 𝑌(0) = ̃𝑦(0).

Our textbook lists several ideas:

1. Improper MI: generate draws 𝑦(𝑠)
(1) from 𝑌(1) ∣ 𝑌(0) = ̃𝑦(0), 𝜃 where 𝜃 is some estimate of

𝜃 maybe from complete units. The reason this is called improper is because it doesn’t
propagate uncertainty in the estimated 𝜃.

2. MI with asymptotic MLE from complete units: generate draws 𝑦(𝑠)
(1) from 𝑌(1) ∣ 𝑌(0) =

̃𝑦(0), 𝜃 where 𝜃 ∼ N( ̂𝜃, 𝑖( ̂𝜃)−1).
3. Chained equation multiple imputation

This is the most flexible option, and the one that is most widely implemented in software
packages that do multiple imputation.

The idea is that if you have many variables, say 𝑌1, … , 𝑌𝑝, and completely observed covariates
𝑍, one could formulate a sequence of conditional models, just like in Gibbs sampling:

𝑓𝑌1
(𝑦1 ∣ 𝑦2, … , 𝑦𝑝, 𝑧, 𝜓1)

⋮
𝑓𝑌𝑗

(𝑦𝑗 ∣ 𝑦1, … , 𝑦𝑗−1, 𝑦𝑗+1, … , 𝑦𝑝, 𝑧, 𝜓𝑗)
𝑓𝑌𝑝

(𝑦𝑝 ∣ 𝑦1, … , 𝑦𝑝−1, 𝑧, 𝜓𝑝)
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let 𝑦𝑗(0) be the observed values in the 𝑗th column of 𝑌 and let 𝑦𝑗(1) be the missing values. Let
the following matrices be the observed information for given MLEs ̂𝜓1, … , ̂𝜓𝑝 and observed
data ̃𝑦(0)1, … , ̃𝑦(0)𝑝:

𝐻𝜓1,𝜓1
( ̂𝜓1) = −∇2

𝜓1
log 𝑓𝑌1

( ̃𝑦1(0) ∣ 𝑦2, … , 𝑦𝑝, 𝑧, 𝜓1) ∣𝜓1= ̂𝜓1

⋮
𝐻𝜓𝑗,𝜓𝑗

( ̂𝜓𝑗) = −∇2
𝜓𝑗

log 𝑓𝑌𝑗
( ̃𝑦𝑗(0) ∣ 𝑦1, … , 𝑦𝑗−1, 𝑦𝑗+1, … , 𝑦𝑝, 𝑧, 𝜓𝑗) ∣𝜓𝑗= ̂𝜓𝑗

⋮
𝐻𝜓𝑝,𝜓𝑝

( ̂𝜓𝑝) = −∇2
𝜓𝑝

log 𝑓𝑌𝑝
( ̃𝑦𝑝(0) ∣ 𝑦1, … , 𝑦𝑝−1, 𝑧, 𝜓𝑝) ∣𝜓𝑗= ̂𝜓𝑗

Then we run the following algorithm:

1. Generate a set of initial values: 𝑦(0)
1(1), 𝑦(0)

2(1), … , 𝑦(0)
𝑝(1)

2. At step (𝑡) of the algorithm generate draws sequentially

̂𝜓1 = argmax𝜓1
log 𝑓𝑌1

(𝑦1(0) ∣ 𝑦2(0), 𝑦(𝑡)
2(1) … , 𝑦𝑝(0), 𝑦(𝑡)

𝑝(1), 𝑧, 𝜓1)
̂𝜓(𝑡+1)
1 ∼ Normal( ̂𝜓1, 𝐻𝜓1,𝜓1

( ̂𝜓1)−1)
𝑦(𝑡+1)

1(1) ∼ 𝑓𝑌1
(𝑦1(1) ∣ 𝑦2(0), 𝑦(𝑡)

2(1) … , 𝑦𝑝(0), 𝑦(𝑡)
𝑝(1), 𝑧, ̂𝜓(𝑡+1)

1 )
⋮

̂𝜓𝑗 = argmax𝜓𝑗
log 𝑓𝑌𝑗

(𝑦𝑗(0) ∣ 𝑦1(0), 𝑦(𝑡+1)
2(1) … , 𝑦(𝑗−1)(0), 𝑦(𝑡+1)

(𝑗−1)(1), … 𝑦𝑝(0), 𝑦(𝑡)
𝑝(1), 𝑧, 𝜓𝑗)

̂𝜓(𝑡+1)
𝑗 ∼ Normal( ̂𝜓𝑗, 𝐻𝜓𝑗,𝜓𝑗

( ̂𝜓𝑗)−1)
𝑦(𝑡+1)

𝑗(1) ∼ 𝑓𝑌𝑗
(𝑦𝑗(1) ∣ 𝑦1(0), 𝑦(𝑡+1)

2(1) … , 𝑦(𝑗−1)(0), 𝑦(𝑡+1)
(𝑗−1)(1), … 𝑦𝑝(0), 𝑦(𝑡)

𝑝(1), 𝑧, ̂𝜓(𝑡+1)
𝑗 )

⋮
̂𝜓𝑝 = argmax𝜓𝑗

log 𝑓𝑌𝑝
(𝑦𝑝(0) ∣ 𝑦1(0), 𝑦(𝑡+1)

2(1) … , 𝑦(𝑝−1)(0), 𝑦(𝑡+1)
(𝑝−1)(1), 𝑧, 𝜓𝑝)

̂𝜓(𝑡+1)
𝑝 ∼ Normal( ̂𝜓𝑝, 𝐻𝜓𝑝,𝜓𝑝

( ̂𝜓𝑝)−1)
𝑦(𝑡+1)

𝑝(1) ∼ 𝑓𝑌𝑝
(𝑦𝑝(1) ∣ 𝑦1(0), 𝑦(𝑡+1)

2(1) … , 𝑦(𝑝−1)(0), 𝑦(𝑡+1)
(𝑝−1)(1), 𝑧, ̂𝜓(𝑡+1)

𝑝 )

This is a pseudo Bayesian algorithm, where we approximate the marginal posterior predictive
distribution:

𝑦(𝑡+1)
1(1) ∼ 𝑓𝑌1

(𝑦1(1) ∣ 𝑦1(0), 𝑦2(0), 𝑦(𝑡)
2(1) … , 𝑦𝑝(0), 𝑦(𝑡)

𝑝(1), 𝑧)
with a normal approximation to the posterior for 𝜓1 and a draw from the predictive density
for 𝑦1(1) given all other variables, predictors and the draw from the approximate posterior
at step 𝑡 + 1, ̂𝜓(𝑡+1)

1 . It is possible to do full Bayesian inference, but this would be very
computationally intensive.
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