
Missing data lecture 16: Causal
inference foundations

Set up

We’re often interested in making causal statements about the processes we study. Suppose
we’re interested in whether a year-long jobs training program for disadvantaged workers leads
to lower rates of unemployment in the year following the training program for these workers.
Suppose we had data on post-training program employment records for these workers as well
as those of workers with comparable backgrounds to the trainees in the same labor markets
with putative access to the training program. This is a simplification of a question was
examined in Ashenfelter (1978). We’d probably compare the observed employment status in
the year following the training program 𝑌𝑖 for participants to nonparticipants. Let’s identify
the units 𝑖 = 1, … , 𝑛 in the training program as those with 𝑊𝑖 = 𝑡, and those not in the
program as those with 𝑊𝑖 = 𝑐. Let the value 𝑛𝑡 be the number of people in the training
program, and 𝑛𝑐 as those who aren’t. The simple comparison of mean employment is:

̂𝜏dif = 1
𝑛𝑡

𝑛
∑
𝑖=1

𝑌𝑖1 (𝑊𝑖 = 𝑡) − 1
𝑛𝑐

𝑛
∑
𝑖=1

𝑌𝑖1 (𝑊𝑖 = 𝑐)

We’d probably be tempted to ascribe causality to the comparison: Participation in
a jobs program decreased unemployment by 0.05 percentage points", but we've
learned that one should only say something like:Participation in a jobs program
predicted a decrease in unemployment of 0.05 percentage points”. Why can’t we use the
causal language we’d prefer to use? When can we do so?

Core principles

Potential outcomes and causal effects

The key idea, shared in Imbens and Rubin (2015) is that the effect of a cause is really a
statement about the comparison of two outcomes for a single individual that correspond to
different actions taken. In the job training example, there are two actions: participating in
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a job training program, and not participating in a job training program, which we denote
𝑊𝑖 ∈ {𝑡, 𝑐} with 𝑐 indicating lack of participation. The outcome would be the employment
status the year after each action; 𝑌 𝑊=𝑡

𝑖 would be the employment status after participating in
the job training program, while 𝑌 𝑊=𝑐

𝑖 would be employment status if one did not participate
in the jobs program. These variables are called potential outcomes because they exist without
regards to 𝑊𝑖, the treatment actually chosen by the participants. The causal effect of the
action is defined as the difference between the potential outcomes, namely employment status
if one had participated in the program and employment status if one had not participated
in the program:

𝜏𝑖 = 𝑌 𝑊=𝑡
𝑖 − 𝑌 𝑊=𝑐

𝑖

We can write the different scenarios for each outcome to get the values for 𝜏𝑖:

𝜏𝑖 𝑌 𝑊=𝑡
𝑖 𝑌 𝑊=𝑐

𝑖 Description
0 0 0 Always unemployed, no causal effect
1 1 0 Training led to employment
-1 0 1 Training led to unemployment
0 1 1 Always employed, no causal effect

Note that these causal effects are not dependent on which treatment was actually chosen
because the effect compares two variables that don’t depend on the treatment chosen. The
idea of potential outcomes is called the Rubin Causal Model (RCM). Counterfactual out-
come is another term for these variables. In the RCM, these are considered fixed for each
individual.

Stable Unit Treatment Value Assumption

Crucially, this individual-level causal effect is also not estimable, because we only get to see
one outcome, namely the outcome chosen by the individual. The data we would see for a
single set of individuals is

𝑊𝑖 𝑌 𝑊=𝑡
𝑖 𝑌 𝑊=𝑐

𝑖 𝑌𝑖(0)

0 ? 0 0
1 0 ? 0
1 1 ? 1
0 ? 1 1

This table encodes two assumptions that are present in many causal inference problems:
consistency, and lack of interference. These are combined into the Stable Unit Treatment
Value Assumption (SUTVA):

Assumption 1. SUTVA
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1. There are not different forms or versions of treatments that lead to different potential
outcomes.

2. The potential outcomes for each unit do not depend on treatments assigned to other
units.

The first, consistency, means that we assume the following:

𝑃(𝑌𝑖(0) = 𝑌 𝑊=𝑡
𝑖 ∣ 𝑊𝑖 = 𝑡) = 1, 𝑃 (𝑌𝑖(0) = 𝑌 𝑊=𝑐

𝑖 ∣ 𝑊𝑖 = 𝑐) = 1

This has several implications, all of which are important to chew through:

1. We assume that everyone receives the same type of treatment in the same way. This
would be violated for instance if some job trainees received online instruction while
others received in-person classes.

2. We assume that the act of treatment does not change the observation. This is a well-
known problem in psychology studies, namely that when people are aware that they
are being watched they will change their behavior, also known as the Hawthorne effect.

The second assumption is the no-interference assumption, which states that the potential
outcomes for a single unit do not depend on treatment assignment of other units. This is
the sort of assumption that would fail in a vaccine trial that measured, say, symptomatic
disease caused by an infectious pathogen in households. In this setting, a vaccine may make
participants less infectious, thus a person’s disease status would depend on the vaccination
status of those around them.

Both of these assumptions make it possible to define an individual’s observed outcome, 𝑌𝑖(0)
as a function of their treatment assignment 𝑊𝑖 and their potential outcomes alone:

𝑌𝑖(0) = 1 (𝑊𝑖 = 𝑡) 𝑌 𝑊=𝑡
𝑖 + 1 (𝑊𝑖 = 𝑐) 𝑌 𝑊=𝑐

𝑖

This implies that each unit is missing an observation, which we’ll denote as 𝑌𝑖(1), in keeping
with our missing data notation:

𝑌𝑖(1) = 1 (𝑊𝑖 = 𝑐) 𝑌 𝑊=𝑡
𝑖 + 1 (𝑊𝑖 = 𝑡) 𝑌 𝑊=𝑐

𝑖

Causal inference as a missing data problem

We can invert these relationships to make the missingness more explicit:

𝑌 𝑊=𝑡
𝑖 {𝑌𝑖(0) if 𝑊𝑖 = 𝑡

𝑌𝑖(1) if 𝑊𝑖 = 𝑐 , 𝑌 𝑊=𝑐
𝑖 {𝑌𝑖(1) if 𝑊𝑖 = 𝑡

𝑌𝑖(0) if 𝑊𝑖 = 𝑐
Thus, if we wanted to predict individual causal effects, we would need to impute the missing
observation depending on which treatment group they have been assigned to.
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Missingness mechanisms

We know from our missing data material that if we want to make an inference about model
parameters under missing data, we need to be in the MCAR or MAR setting. We can
think of 𝑊𝑖 as the causal version of 𝑀𝑖. In the missing data realm, we would have 𝑀𝑖𝑡 and
𝑀𝑖𝑐, with 1s representing missingness of 𝑌𝑖𝑡 or 𝑌𝑖𝑐, respectively. These variables give too
many degrees of freedom for causal inference, however, because they are constrained so that
𝑀𝑖𝑡 + 𝑀𝑖𝑐 = 1 for every 𝑖. Thus, we can write our missing data mechanism as a mechanism
for W, the set of assignments for all 𝑛 units under study. Let 𝑌(0) be the observed data for
all participants, and 𝑌(1) be the missing values for all units. MCAR would be the following,
with a slight change of notation:

𝑃(W = 𝑤̃ ∣ 𝑌(0) = 𝑦(0), 𝑌(1) = 𝑦(1)) = 𝑃(W = 𝑤̃ ∣ 𝑌(0) = 𝑦⋆
(0), 𝑌(1) = 𝑦⋆

(1)), ∀𝑦(0), 𝑦(1), 𝑦⋆
(0), 𝑦⋆

(1)

While MACAR would be:

𝑃(W = 𝑤 ∣ 𝑌(0) = 𝑦(0), 𝑌(1) = 𝑦(1)) = 𝑃(W = 𝑤 ∣ 𝑌(0) = 𝑦⋆
(0), 𝑌(1) = 𝑦⋆

(1)), ∀𝑤, 𝑦(0), 𝑦(1), 𝑦⋆
(0), 𝑦⋆

(1)

One way to ensure this is to randomly assign units to treatment. If units are not assigned
randomly to treatment, it may be that we can consider covariates for every individual,
arranges into a 𝑛 × 𝑝 matrix X,

𝑃(W = 𝑤̃ ∣ 𝑌(0) = 𝑦(0), 𝑌(1) = 𝑦(1), X) = 𝑃(W = 𝑤̃ ∣ 𝑌(0) = 𝑦⋆
(0), 𝑌(1) = 𝑦⋆

(1), X), ∀𝑤, 𝑦(0), 𝑦(1), 𝑦⋆
(0), 𝑦⋆

(1)

However, if we don’t control the treatment assignment, like in the jobs training program, we
likely have MNAR missingness:

𝑃(W = 𝑤̃ ∣ 𝑌(0) = ̃𝑦(0), 𝑌(1) = 𝑦(1), X) ≠ 𝑃(W = 𝑤̃ ∣ 𝑌(0) = ̃𝑦, 𝑌(1) = 𝑦⋆
(1), X) for some 𝑦(1) ≠ 𝑦⋆

(1)

For instance, given that the job training program is a one-year program, people who decide
to select into the program might have fewer employment prospects than the people who
don’t select into the program.

Causal Estimands

Typically, we want to define an estimable quantity that is related to the population of
interest. In causal inference, the population of interest tends to be the sample at hand,
which is assumed to arise from an infinite superpopulation. In causal inference, we know
that causal effects are comparisons of unit-level potential outcomes, so averages of these
values would make for natural causal estimands.
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One would be be the finite-sample mean of the individual causal effects:

𝜏fs = 1
𝑛

𝑛
∑
𝑖=1

(𝑌 𝑊=𝑡
𝑖 − 𝑌 𝑊=𝑐

𝑖 )

We can write the contrast above as the means over the two groups:

̂𝜏dif = 1
𝑛𝑡

𝑛
∑
𝑖=1

1 (𝑊𝑖 = 𝑡) 𝑌𝑖(0) − 1
𝑛𝑐

𝑛
∑
𝑖=1

1 (𝑊𝑖 = 𝑐) 𝑌𝑖(0)

= 1
𝑛𝑡

𝑛
∑
𝑖=1

1 (𝑊𝑖 = 𝑡) 𝑌 𝑊=𝑡
𝑖 − 1

𝑛𝑐

𝑛
∑
𝑖=1

1 (𝑊𝑖 = 𝑐) 𝑌 𝑊=𝑐
𝑖

= 1
𝑛

𝑛
∑
𝑖=1

1 (𝑊𝑖 = 𝑡) 𝑌 𝑊=𝑡
𝑖

𝑛𝑡/𝑛 − 1
𝑛

𝑛
∑
𝑖=1

1 (𝑊𝑖 = 𝑐) 𝑌 𝑊=𝑐
𝑖

𝑛𝑐/𝑛

If we were under the MACAR scenario, we could take the expectation of both sides with
respect to 𝑊𝑖 ∣ 𝑌𝑖(0), 𝑌𝑖(1) to get

𝔼 [ ̂𝜏dif ∣ 𝑌𝑖(0), 𝑌𝑖(1)] = 1
𝑛

𝑛
∑
𝑖=1

𝔼 [1 (𝑊𝑖 = 𝑡) ∣ 𝑌𝑖(0), 𝑌𝑖(1)] 𝑌 𝑊=𝑡
𝑖

𝑛𝑡/𝑛 − 1
𝑛

𝑛
∑
𝑖=1

𝔼 [1 (𝑊𝑖 = 𝑐) ∣ 𝑌(0), 𝑌(1)] 𝑌 𝑊=𝑐
𝑖

𝑛𝑐/𝑛

= 1
𝑛

𝑛
∑
𝑖=1

𝔼 [1 (𝑊𝑖 = 𝑡)] 𝑌 𝑊=𝑡
𝑖

𝑛𝑡/𝑛 − 1
𝑛

𝑛
∑
𝑖=1

𝔼 [1 (𝑊𝑖 = 𝑐)] 𝑌 𝑊=𝑐
𝑖

𝑛𝑐/𝑛

= 1
𝑛

𝑛
∑
𝑖=1

𝑌 𝑊=𝑡
𝑖 − 1

𝑛
𝑛

∑
𝑖=1

𝑌 𝑊=𝑐
𝑖

= 𝜏fs

The second line came from our MACAR assumption, which we could satisfy in a randomized
experiment.

Assignment mechanisms

As we showed above, we can write 𝑌𝑖(0) and 𝑌𝑖(1) in terms of the assignment 𝑊𝑖 and the
potential outcomes 𝑌 𝑊=𝑡

𝑖 and 𝑌 𝑊=𝑐
𝑖 𝑌 𝑊=𝑡

𝑖 , so we can write

𝑃(W = 𝑤 ∣ 𝑌(0) = ̃𝑦(0), 𝑌(1) = 𝑦(1), X = 𝑥)

as
𝑃(W = 𝑤 ∣ 𝑌 𝑊=𝑡 = 𝑦𝑡, 𝑌 𝑊=𝑐 = 𝑦𝑐, X = 𝑥)

where we let 𝑌 𝑊=𝑡 represent the 𝑛-vector of all unit potential outcomes under treatment
and 𝑌 𝑊=𝑐 is the 𝑛-vector of all unit potential outcomes under control, and the vectors 𝑦𝑡
and 𝑦𝑐 are dummy vectors in the space of binary 𝑛-vectors, or {0, 1}𝑛.
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This probability distribution over vectors 𝑤 ∈ {𝑡, 𝑐}𝑛 is called the assignment mechanism.
It sums to one over all possible assignments:

∑
𝑤∈{𝑡,𝑐}𝑛

𝑃(W = 𝑤 ∣ 𝑌 𝑊=𝑡 = 𝑦𝑡, 𝑌 𝑊=𝑐 = 𝑦𝑐, X = 𝑥) = 1

We can write the probability that 𝑊𝑖 = 𝑡

𝑃(𝑊𝑖 = 𝑡 ∣ 𝑌 𝑊=𝑡 = 𝑦𝑡, 𝑌 𝑊=𝑐 = 𝑦𝑐, X = 𝑥) = ∑
𝑤∈{𝑡,𝑐}𝑛∣𝑤𝑖=𝑡

𝑃(W = 𝑤 ∣ 𝑌 𝑊=𝑡 = 𝑦𝑡, 𝑌 𝑊=𝑐 = 𝑦𝑐, X = 𝑥) = 1

We can define something called the propensity score, which is the probability of treatment
for someone with a covariate 𝑋𝑖 = 𝑥

𝑒(𝑥) = 1
𝑁(𝑥) ∑

𝑖∣𝑋𝑖=𝑥
𝑃(𝑊𝑖 = 𝑡 ∣ 𝑌 𝑊=𝑡 = 𝑦𝑡, 𝑌 𝑊=𝑐 = 𝑦𝑐, X = 𝑥)

where 𝑁(𝑥) is the number of units with 𝑋𝑖 = 𝑥. If 𝑁(𝑥) = 0 we set 𝑒(𝑥) = 0.

A typical assignment mechanism restriction is that of individualistic assignment, where

𝑃(𝑊𝑖 = 𝑡 ∣ 𝑌 𝑊=𝑡 = 𝑦𝑡, 𝑌 𝑊=𝑐 = 𝑦𝑐, X = 𝑥) = 𝑃(𝑊𝑖 = 𝑡 ∣ 𝑌 𝑊=𝑡
𝑖 = 𝑦𝑖𝑡, 𝑌 𝑊=𝑐

𝑖 = 𝑦𝑖𝑐, X𝑖 = 𝑥𝑖)

Probabilistic assignment is an individual assignment mechanism that is in the interval
(0, 1):

0 < 𝑃(𝑊𝑖 = 𝑡 ∣ 𝑌 𝑊=𝑡 = 𝑦𝑡, 𝑌 𝑊=𝑐 = 𝑦𝑐, X = 𝑥) < 1

Finally, we can define the most important assignment mechanism restriction, which is called
unconfoundedness:

Definition 1. Unconfounded Assignment

𝑃(W = 𝑤 ∣ 𝑌 𝑊=𝑡 = 𝑦𝑡, 𝑌 𝑊=𝑐 = 𝑦𝑐, X = 𝑥) = 𝑃(W = 𝑤 ∣ 𝑌 𝑊=𝑡 = 𝑦⋆
𝑡 , 𝑌 𝑊=𝑐 = 𝑦⋆

𝑐, X = 𝑥)

for all 𝑤, 𝑥, 𝑦𝑡, 𝑦𝑐, 𝑦⋆
𝑡 , 𝑦⋆

𝑐.

Note that this definition is just MACAR, but for treatment assignment.

We can relax this assumption in the following way, as shown in Rubin (1978):

Definition 2. Ignorable Treatment Assignment

𝑃(W = 𝑤 ∣ 𝑌(0) = 𝑦(0), 𝑌(1) = 𝑦(1), X = 𝑥) = 𝑃(W = 𝑤 ∣ 𝑌(0) = 𝑦(0), 𝑌(1) = 𝑦⋆
(1), X = 𝑥)

for all 𝑦(1), 𝑦⋆
(1).
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Note that this is a definition akin to MAR for missingness, where we moved back to missing
data notation to highlight the potential dependence on observed outcomes but not unob-
served outcomes.
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