
Missing data lecture 2

Recap

We left off with characterizations of MCAR, MAR, and MNAR:

1. MCAR: 𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦𝑖, 𝜙) = 𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦∗
𝑖 , 𝜙) for all 𝜙, 𝑖, 𝑦𝑖, 𝑦∗

𝑖 such that 𝑦𝑖 ≠ 𝑦∗
𝑖 .

2. MAR: 𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦(0)𝑖, 𝑦(1)𝑖, 𝜙) = 𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦(0)𝑖, 𝑦∗
(1)𝑖, 𝜙) for all 𝜙, 𝑖, 𝑦(1)𝑖, 𝑦∗

(1)𝑖 such
that 𝑦(1)𝑖 ≠ 𝑦∗

(1)𝑖.

3. MAR: 𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦(0)𝑖, 𝑦(1)𝑖, 𝜙) ≠ 𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦(0)𝑖, 𝑦∗
(1)𝑖, 𝜙) for some 𝜙, 𝑖, 𝑦(1)𝑖, 𝑦∗

(1)𝑖 such
that 𝑦(1)𝑖 ≠ 𝑦∗

(1)𝑖.

We’ll come back to the “Always” versions of these missingness mechanisms later in the
lecture.

MAR with covariates

A common extension of MAR is MAR given covariates. Let the completely observed covariate
matrix be 𝑋 with 𝑛 rows and 𝑝 columns. Let the 𝑖th row of 𝑋 be denoted 𝑥𝑖. Then MAR
with covariates is as follows: The equality:

𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑥𝑖, 𝑦(0)𝑖, 𝑦(1)𝑖𝜙) = 𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑥𝑖, 𝑦(0)𝑖, 𝑦∗
(1)𝑖𝜙)

holds for all 𝑖, 𝑦(1)𝑖, 𝑦∗
(1)𝑖, and 𝜙.

Joint density 𝑌 , 𝑀

The past lecture focused only on the missingness mechanism, the distribution of 𝑀 given 𝑌 .
Of course, 𝑦𝑖 has a distribution (with a density) that we’d like to learn, typically through
inferring parameters 𝜃: 𝑓𝑌 (𝑦𝑖 ∣ 𝜃). Let the sample space for 𝑦𝑖 be Y . Putting the distribution
of 𝑌 together with the density corresponding to the conditional distribution 𝑀 ∣ 𝑌 will give
us a joint density for the pairs (𝑦𝑖, 𝑚𝑖):

𝑓𝑌 ,𝑀(𝑦𝑖, 𝑚𝑖 ∣ 𝜃, 𝜙) = 𝑓𝑌 (𝑦𝑖 ∣ 𝜃)𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦𝑖, 𝜙)
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This leads to the joint density for all 𝑛 observations, assuming 𝑦𝑖 are independent and 𝑚𝑖
are conditionally independent given 𝑦𝑖 and observations are identically distributed:

𝑓𝑌 ,𝑀(𝑦1, 𝑚1, … , 𝑦𝑛, 𝑚𝑛 ∣ 𝜃, 𝜙) =
𝑛

∏
𝑖=1

𝑓𝑌 (𝑦𝑖 ∣ 𝜃)𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦𝑖, 𝜙) (1)

When there is a single variable, 𝑦𝑖 is one dimensional and 𝑚𝑖 is a binary random variable.

What we’ve written above isn’t something we can evaluate, because we don’t observe 𝑦𝑖
when 𝑚𝑖 = 1. The expression (Equation 1) will need to be modified in order to evaluate the
density for all 𝑛:

𝑓𝑌(0),𝑀(𝑦(0), 𝑚1, … , 𝑚𝑛 ∣ 𝜃, 𝜙) =
𝑛

∏
𝑖=1

(∫
Y

𝑓𝑌 (𝑦𝑖 ∣ 𝜃)𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦𝑖, 𝜙)𝑑𝑦𝑖)𝑚𝑖(𝑓𝑌 (𝑦𝑖 ∣ 𝜃)𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦𝑖, 𝜙))1−𝑚𝑖

(2)
This is pretty ugly! When we have a missing observation, the density needs to be integrated
over all possible values of 𝑦𝑖 to properly account for the fact that the observation is missing.

Under MAR in the univariate setting the following must be true:

𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝑦𝑖, 𝜙) = 𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝜙)

In this case, 𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝜙) is just a Bernoullli distribution with 𝜙 governing the probability
of missingness.

Which leads to the following simplification for the observed data density:

𝑓𝑌(0),𝑀(𝑦(0), 𝑚1, … , 𝑚𝑛 ∣ 𝜃, 𝜙) =
𝑛

∏
𝑖=1

(∫
Y

𝑓𝑌 (𝑦𝑖 ∣ 𝜃)𝑑𝑦𝑖)𝑚𝑖𝑓𝑌 (𝑦𝑖 ∣ 𝜃))1−𝑚𝑖𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝜙) (3)

This looks much better: the integral ∫Y 𝑓𝑌 (𝑦𝑖 ∣ 𝜃)𝑑𝑦𝑖 = 1, so the observed density is:

𝑓𝑌(0),𝑀(𝑦(0), 𝑚1, … , 𝑚𝑛 ∣ 𝜃, 𝜙) =
𝑛

∏
𝑖=1

𝑓𝑌 (𝑦𝑖 ∣ 𝜃))1−𝑚𝑖𝑓𝑀∣𝑌 (𝑚𝑖 ∣ 𝜙) (4)

Now that we have something that we can evaluate, what do we do with the density (Equa-
tion 4)?
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Likelihood-based inference

This bit of the notes follows §6.1 pretty closely.

For the moment, let’s forget about missing data, and move to the simpler case where we
have no missing observations and we’re just focused on learning the unknown parameters
𝜃 in the density 𝑓𝑌 (𝑦𝑖 ∣ 𝜃). This unknown parameter is going to live in the space Ω𝜃. For
example, if 𝜃 = (𝜇, 𝜎2) and 𝑓𝑌 (𝑦𝑖 ∣ 𝜃) = 1√

2𝜋𝜎2 𝑒− 1
2𝜎2 (𝑦𝑖−𝜇)2

, then Ω𝜃 would be (R,R+).
We know densities are functions of 𝑦𝑖 for fixed values of 𝜃. If we instead fix 𝑦𝑖 and let 𝜃 vary,
we get a likelihood function.

Let the likelihood be defined for a fixed 𝑦𝑖 as

𝐿𝑌 (𝜃 ∣ 𝑦𝑖) ∝ {𝑓(𝑦𝑖 ∣ 𝜃) 𝜃 ∈ Ω𝜃
0 𝜃 /∈ Ω𝜃

This is a bit odd, because the expression means that anything proportional to the density
of 𝑌 such that the factor by which 𝐿𝑌 (𝜃 ∣ 𝑦𝑖) differs from 𝑓(𝑦𝑖 ∣ 𝜃) is constant in 𝜃.

Typically, we’ll have more than one observation, and under independence of 𝑦𝑖 we get the
likelihood for the full sample:

𝐿𝑌 (𝜃 ∣ 𝑦1, … , 𝑦𝑛) ∝ {∏𝑛
𝑖=1 𝑓(𝑦𝑖 ∣ 𝜃) 𝜃 ∈ Ω𝜃

0 𝜃 /∈ Ω𝜃

We’ll often work with the log-likelihood, which is denoted in our book as:

ℓ𝑌 (𝜃 ∣ 𝑦1, … , 𝑦𝑛) = log(𝐿𝑌 (𝜃 ∣ 𝑦1, … , 𝑦𝑛))

When we have independence, we get

ℓ𝑌 (𝜃 ∣ 𝑦1, … , 𝑦𝑛) =
𝑛

∑
𝑖=1

log 𝑓(𝑦𝑖 ∣ 𝜃) + 𝐶

where 𝐶 is any term that doesn’t depend on 𝜃.

Moving forward with the normal example from above, the likelihood of 𝑛 observations from
the normal distribution is:

𝐿𝑌 (𝜇, 𝜎2 ∣ 𝑦1, … , 𝑦𝑛) =
𝑛

∏
𝑖=1

1√
2𝜋𝜎2 𝑒− 1

2𝜎2 (𝑦𝑖−𝜇)2

= (2𝜋𝜎2)− 𝑛
2 exp (− 1

2𝜎2 ∑𝑖(𝑦𝑖 − 𝜇)2)

Our definition of likelihood means that we can drop the factor of (2𝜋)− 𝑛
2 from the front of

the expression. Taking logs and dropping that constant leads to the log-likelihood:
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ℓ𝑌 (𝜇, 𝜎2) = −𝑛
2 log 𝜎2 − 1

2𝜎2 ∑𝑖(𝑦𝑖 − 𝜇)2

which is a bivariate function of 𝜇 and 𝜎2.

The way that we’ll use the likelihood is to use the intuition that for two parameter values 𝜃′

and 𝜃′′ if 𝐿(𝜃′ ∣ 𝑦) = 2𝐿(𝜃′′ ∣ 𝑦), then there is evidence against 𝜃′′ being the parameter that
generated the dataset.

If we were to find a ̂𝜃 such that 𝐿𝑌 ( ̂𝜃 ∣ 𝑦) ≥ 𝐿𝑌 (𝜃∗ ∣ 𝑦) for all 𝜃∗ ≠ ̂𝜃, then this would be
evidence against 𝜃 being anything other than ̂𝑡ℎ𝑒𝑡𝑎. This is the intuition behind maximum
likelihood, or finding the value of the unknown parameters 𝜃 that maximizes the likelihood
function (or, equivalently, the log-likelihood).

We’ll say that the maximum likelihood estimator (MLE) of 𝜃 is the value ̂𝜃 ∈ Ω𝜃 that
maximizes the log-likelihood.

In order to maximize the likelihood, we need to find the point at which the gradient of
the log-likelihood, also known as the score function, is zero, or 𝜕ℓ𝑌 (𝜃∣𝑦)

𝜕𝜃 ∣𝜃= ̂𝜃= 0. If 𝜃 is
𝑑-dimensional, then there are 𝑑 equations that need to be solved. In addition, the Hessian
of the log-likelihood needs to be checked to see if it is negative semidefinite at the MLE:

𝑧𝑇 𝜕2ℓ𝑌 (𝜃 ∣ 𝑦)
𝜕𝜃 𝜕𝜃𝑇 ∣𝜃= ̂𝜃 𝑧 ≤ 0 ∀ 𝑧 ∈ R𝑑

This ensures that we’ve found a maximum. Note that we can have several maxima, all of
which lead to the same log-likelihood value.

Simple MLE example

Let’s say that 𝑦𝑖
iid∼ Exp(𝜆). Then the likelihood will be

𝐿(𝜆 ∣ 𝑦1, … , 𝑦𝑛) = 𝜆−𝑛𝑒− 1
𝜆 ∑𝑖 𝑦𝑖

Then the score equation is:

−𝑛
𝜆 + ∑

𝑖

𝑦𝑖
𝜆2 = 0

This leads to �̂� = ̄𝑦 or the sample mean.
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More involved MLE example: Normal with unknown mean and variance

Suppose 𝑦𝑖
iid∼ Normal(𝜇, 𝜎2) for 𝑖 = 1, … , 𝑛.

We wrote the log-likelihood above as:

ℓ𝑌 (𝜇, 𝜎2) = −𝑛
2 log 𝜎2 − 1

2𝜎2 ∑𝑖(𝑦𝑖 − 𝜇)2

This leads to two likelihood equations:

𝜕ℓ
𝜕𝜇 = 1

𝜎2 ∑𝑖(𝑦𝑖 − 𝜇)2

𝜕ℓ
𝜕𝜎2 = − 𝑛

2𝜎2 + 1
2𝜎4 ∑𝑖(𝑦𝑖 − 𝜇)2

Setting these to zero and solving for (𝜇, 𝜎2) gives the MLEs ̂𝜇 = ̄𝑦 and �̂�2 = 1
𝑛 ∑𝑖(𝑦𝑖 − ̄𝑦)2.

It’s straightforward to show that 𝔼 [ ̂𝜇] under the data generating process above is equal to
𝜇. It is less straightforward and somewhat distressing that 𝔼 [ ̂𝜎2] not equal to 𝜎2.

𝔼 [ ̂𝜎2] = 1
𝑛𝔼 [∑

𝑖
(𝑦2

𝑖 − 2𝑦𝑖 ̄𝑦 + ̄𝑦2)]

= 1
𝑛 (𝔼 [∑𝑖 𝑦2

𝑖 − 2𝑛 ̄𝑦2 + 𝑛 ̄𝑦2)]

= 1
𝑛 ∑𝑖 𝔼 [𝑦2

𝑖 ] − 𝔼 [ ̄𝑦2]

= 𝜇2 + 𝜎2 − 1
𝑛2 𝔼 [∑𝑖 𝑦2

𝑖 + 2 ∑𝑖<𝑗 𝑦𝑖𝑦𝑗]

= 𝜇2 + 𝜎2 − 1
𝑛2 (∑𝑖 𝔼 [𝑦2

𝑖 ] + 2 ∑𝑖<𝑗 𝔼 [𝑦𝑖𝑦𝑗])

= 𝜇2 + 𝜎2 − 1
𝑛2 (𝑛(𝜇2 + 𝜎2) + 𝑛(𝑛 − 1)𝜇2)

= 𝜇2 + 𝜎2 − 𝜇2 − 1
𝑛𝜎2

= 𝑛 − 1
𝑛 𝜎2

Sorta odd that MLEs can give us biased estimates, but, you might say, as 𝑛 →∞ all is fine
and we recover 𝜎2. Indeed, you can show that the MLE for 𝜎2 is consistent, which means
that as 𝑛 →∞ �̂�2 → 𝜎 in probability.
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More complicated still: Neyman-Scott problem

Is this always the case, that the MLE is consistent? The answer is no, and the MLE can fail
pretty spectacularly. Consider the following problem:

𝑦𝑖1, 𝑦𝑖2 ∼ Normal(𝜇𝑖, 𝜎2)
Let’s say that we don’t care about inferring 𝜇𝑖 but we care only about 𝜎2. One way we
could come up with an estimator is to difference the two observations for each group, so
𝑧𝑖 = 𝑦𝑖1 − 𝑦𝑖2 and :

𝑧𝑖 ∼ Normal(0, 2𝜎2)
Then we could reuse our work from above to solve for 𝜎2:

2𝜎2 = 1
𝑛 ∑𝑖 𝑧2

𝑖

which leads to an estimator for 𝜎2 of:

�̂�2 = 1
2𝑛 ∑𝑖 𝑧2

𝑖

But this isn’t quite maximum likelihood because we’ve transformed the data, and then used
the transformed data to derive an MLE for 𝜎2 using 𝑧𝑖. What if we just use 𝑦𝑖1, 𝑦𝑖2?

The likelihood is straightforward:

𝐿𝑌 ({𝜇𝑖}, 𝜎2 ∣ 𝑦) =
𝑛

∏
𝑖=1

1
2𝜋𝜎2 exp (− 1

2𝜎2 ((𝑦𝑖1 − 𝜇𝑖)2 + (𝑦𝑖2 − 𝜇𝑖)2))

The likelihood equations for 𝜇𝑖 are

𝜕ℓ𝑌 ({𝜇𝑖}, 𝜎2 ∣ 𝑦)
𝜕𝜇𝑖

= 1
𝜎2 ((𝑦𝑖1 − 𝜇𝑖) + (𝑦𝑖2 − 𝜇𝑖))

Which just leads to the estimator ̂𝜇𝑖 = 𝑦𝑖1+𝑦𝑖2
2 = ̄𝑦𝑖.

Let’s write out the likelihood equations for 𝜎2 after plugging in our ̂𝜇𝑖 = ̄𝑦𝑖:

𝜕ℓ𝑌 ({𝜇𝑖}, 𝜎2 ∣ 𝑦)
𝜕𝜎2 = − 𝑛

𝜎2 + 1
2𝜎2 ∑𝑖 ∑2

𝑗=1(𝑦𝑖𝑗 − ̄𝑦𝑖)2

This leads to an MLE of

�̂�2 = 1
2𝑛 ∑𝑖 ∑2

𝑗=1(𝑦𝑖𝑗 − ̄𝑦𝑖)2
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Which seems reasonable enough. But let’s write the inner sum in terms of 𝑧𝑖:

(𝑦𝑖1 − ̄𝑦𝑖)2 + (𝑦𝑖2 − ̄𝑦𝑖)2 = 𝑦2
𝑖1 + 𝑦2

𝑖2 + 2 ̄𝑦2
𝑖 − 2 ̄𝑦𝑖(𝑦𝑖1 + 𝑦𝑖2)

= 𝑦2
𝑖1 + 𝑦2

𝑖2 + (𝑦𝑖1 + 𝑦𝑖2)2

2 − (𝑦𝑖1 + 𝑦𝑖2)2

= 𝑦2
𝑖1 + 𝑦2

𝑖2 − (𝑦𝑖1 + 𝑦𝑖2)2

2
= 1

2(𝑦2
𝑖1 + 𝑦2

𝑖2 − 2𝑦𝑖1𝑦𝑖2)

= 1
2𝑧2

𝑖

This means that the MLE is equal to

�̂�2 = 1
4𝑛 ∑𝑖 𝑧2

𝑖

This estimator will never approach 𝜎2, as 𝑛 →∞.

This is due to the fact that the dimension of the parameter space grows linearly with the
sample size as 𝑛 →∞.

The point is that MLEs (and any other sort of likelihood-based inference) can lead you astray
if you’re not careful, and they are not a panacea.
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