
Missing data lecture 3: More ML and
Ignorability

Maximum likelihood for multivariate normal distribution

Let 𝑦𝑖 ∈ R𝐾, 𝑦𝑖
iid∼ Normal(𝜇, Σ) for 𝑛 samples so that the density for 𝑦𝑖 is

𝑓𝑌 (𝑦𝑖 ∣ 𝜇, Σ) = (2𝜋)− 𝐾
2 (det Σ)− 1

2 exp (−1
2(𝑦𝑖 − 𝜇)𝑇 Σ−1(𝑦𝑖 − 𝜇))

The log-likelihood is:

ℓ𝑌 (𝜇, Σ ∣ 𝑦𝑖) = 1
2 log det Σ − 1

2(𝑦𝑖 − 𝜇)𝑇 Σ−1(𝑦𝑖 − 𝜇)

The book gives the expressions for the MLEs of the mean and covariance matrix of the
multivariate normal distribution without details. Going through the algebra can be useful
for other more complicated problems. But in order to do so, we’ll need a slight change to
how we’re used to thinking about partial differentiation. The following blurb on differentials
is based on Magnus and Neudecker (2019).

Differentials and matrix differentiation

It all starts with rearranging the derivative:

𝑓 ′(𝑐) = lim
𝑢→0

𝑓(𝑐 + 𝑢) − 𝑓(𝑐)
𝑢 ,

to get a linear approximation to 𝑓 at the point 𝑐:

𝑓(𝑐 + 𝑢) = 𝑓(𝑐) + 𝑓 ′(𝑐)𝑢 + 𝑟𝑐(𝑢)
where 𝑟𝑐(𝑢) = 𝑜(𝑢) or lim𝑢→0

𝑟𝑐(𝑢)
𝑢 = 0. This is the one term Taylor expansion of the function

𝑓 at 𝑐 + 𝑢 about 𝑐.
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Bringing 𝑓(𝑢) to the left-hand side gives: 𝑓(𝑐+𝑢)−𝑓(𝑢) = 𝑓 ′(𝑐)𝑢+𝑟𝑐(𝑢). We can define the
change in the linear approximation of 𝑓 from 𝑐 to 𝑐 + 𝑢 as d𝑓(𝑐; 𝑢), or the first differential
of 𝑓 at 𝑐 with increment 𝑢:

d𝑓(𝑐; 𝑢) = 𝑢𝑓 ′(𝑐)

Subbing this back into the linear approximation for 𝑓 gives:

𝑓(𝑐 + 𝑢) = 𝑓(𝑐) + d𝑓(𝑐; 𝑢) + 𝑟𝑐(𝑢)

We can identify the differential by finding the linear approximation to a function at 𝑐:

𝑓(𝑐 + 𝑢) = 𝑓(𝑐) + 𝛼𝑢 + 𝑟𝑐(𝑢).

If we can find an 𝛼 that depends on 𝑐 but not on 𝑢 such that 𝑟𝑐(𝑢) = 𝑜(𝑢) we say that
𝛼 = 𝑓 ′(𝑐).
Let 𝑓 now be a function R𝑚 → R and let the differential be constructed via the same
argument as above, but now let 𝑐, 𝑢 ∈ R𝑚, and define 𝑟𝑐(𝑢) such that lim𝑢→0

𝑟𝑐(𝑢)
‖𝑢‖ = 0:

𝑓(𝑐 + 𝑢) = 𝑓(𝑐) + 𝐴(𝑐)𝑢 + 𝑟𝑐(𝑢).

If we equate the row vector 𝐴(𝑐) with the partial derivative of 𝑓 with respect to 𝑢, we can
recognize this as the multivariate Taylor expansion of 𝑓(𝑐 + 𝑢) around 𝑓(𝑐).
Let’s compute the differential of 𝑓(𝑥, 𝑦) = 𝑥𝑇 𝑦 for 𝑥, 𝑦 ∈ R𝑚.

d(𝑥𝑇 𝑦)

We could do this via the following

(𝑢𝑥 + 𝑐𝑥)𝑇 (𝑢𝑦 + 𝑐𝑦) = 𝑐𝑇
𝑥 𝑐𝑦 + 𝑐𝑇

𝑥 𝑢𝑦 + 𝑢𝑇
𝑥 𝑐𝑦 + 𝑢𝑇

𝑥 𝑢𝑦

The vector 𝐴(𝑐) here is (𝑐𝑇
𝑥 , 𝑐𝑇

𝑦 ) assuming we’ve ordered our variables as (𝑢𝑥, 𝑢𝑦). We can see
this from the fact that 𝑐𝑇

𝑥 𝑐𝑦 is the evaluation of 𝑓 at 𝑐𝑥, 𝑐𝑦 and that lim𝑢𝑥,𝑢𝑦→0
𝑢𝑇

𝑥 𝑢𝑦

√‖𝑢𝑥‖2+‖𝑢𝑦‖2
=

0.

We could also recognize the fact that our variables partition naturally into two vectors, 𝑥
and 𝑦. When we have a natural partition of variables 𝑢 into 𝑢1 and 𝑢2 we can write the
differential for 𝑓(𝑢) more easily in terms of two differentials:

d𝑓(𝑐; 𝑢) = 𝐴(𝑐)𝑢
= 𝐴(𝑐1)𝑢1 + 𝐴(𝑐2)𝑢2

which just differentiates between the two sets of variables, so that 𝐴(𝑐1) is the partial deriva-
tive of 𝑓 with respect to 𝑢1 and 𝐴(𝑐2) is the partial derivative with respect to 𝑢2.
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In the example above, 𝑓(𝑥, 𝑦) = 𝑥𝑇 𝑦, we can write:

d(𝑥𝑇 𝑦) = 𝑥𝑇 𝑢𝑦 + 𝑢𝑇
𝑥 𝑦

= 𝑥𝑇 𝑢𝑦 + 𝑦𝑇 𝑢𝑥

This is important for thinking about differentials of log-likelihoods like the multivariate
normal where we’ll have two sets of parameters that we’d like to find the partial derivatives
with respect to, Σ and 𝜇:

ℓ𝑌 (𝜇, Σ ∣ 𝑦) = 1
2 log det Σ − 1

2(𝑦𝑖 − 𝜇)𝑇 Σ−1(𝑦𝑖 − 𝜇)

dℓ𝑌 (𝜇, Σ ∣ 𝑦) = 1
2d(log det Σ) − 1

2d((𝑦𝑖 − 𝜇)𝑇 Σ−1(𝑦𝑖 − 𝜇))

We can generalize to vector functions: Let 𝑓(𝑥) ∶ R𝑚 → R𝑛:

𝑓(𝑐 + 𝑢) = 𝑓(𝑐) + 𝐴(𝑐)𝑢 + 𝑟𝑐(𝑢).

for lim𝑢→0 𝑟𝑐(𝑢)/Y𝑢Y = 0. Then d𝑓(𝑐; ) = 𝐴(𝑐)𝑢 is the differential of 𝑓 evaluated at 𝑐 of
increment 𝑢.

The same idea applies to matrices, when combined with the vec function, which concatenates
an 𝑛 × 𝑝 matrix column by column into an 𝑛 × 𝑝-length vector. Let 𝐹 be a matrix function
R𝑛×𝑞 → R𝑚×𝑝. Let 𝐶 and 𝑈 be in R𝑚×𝑞. If 𝐴(𝐶) ∈ R𝑚𝑝×𝑛𝑞 such that:

vec(𝐹(𝐶 + 𝑈)) = vec(𝐹(𝐶)) + 𝐴(𝐶)vec(𝑈) + vec(𝑅𝑐(𝑈)).

Then the 𝑚 × 𝑝 matrix d𝐹(𝐶; 𝑈) is defined by vec(d𝐹(𝐶; 𝑈)) = 𝐴(𝐶)vec(𝑈).
The reason to do this is because the differential generalizes to matrices a bit easier than
do partial derivatives. This is because it isn’t clear along which dimensions the partial
derivatives should lie: Should the partials of a matrix function become a third dimension,
like a 3-d array?

Under this framework, the rows of the matrices 𝐴(𝑐) and 𝐴(𝐶) correspond to a dimension
of the range of the function 𝑓(𝑐) or 𝐹(𝐶), while the columns correspond to a dimension of
the domain.

The power of the differentials is clear from the chain rule, which is called Cauchy’s rule of
invariance in differential-land. This just means that if 𝑏 = 𝑓(𝑐) and ℎ = 𝑔(𝑏) the differential
of ℎ is:

d(ℎ; 𝑢) = d(ℎ; d(𝑓; 𝑐))
= 𝐴𝑔(𝑏)𝐴𝑓(𝑐)𝑢

if 𝑓 ∶ R𝑚 → R𝑝 and 𝑔 ∶ R𝑝 → R𝑛 so ℎ ∶ R𝑚 → R𝑛, then 𝐴𝑔(𝑏) ∈ 𝑅𝑛×𝑝 and 𝐴𝑓(𝑐) ∈ 𝑅𝑝×𝑚

and 𝑢 ∈ R𝑚.
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Differential with respect to 𝜇

First we’ll ignore the differential with respect to Σ. We’ll expand out that quadratic form
into the parts that depend only on 𝜇:

dℓ𝑌 (𝜇, Σ ∣ 𝑦𝑖) = 𝑦𝑇
𝑖 Σ−1d𝜇 − 1

2d(𝜇𝑇 Σ−1𝜇)

Taking the gradient with respect to 𝜇 we get:

dℓ𝑌 (𝜇, Σ ∣ 𝑦𝑖) = 𝑦𝑇
𝑖 Σ−1d𝜇 − 1

2d(𝜇𝑇 )Σ−1𝜇 − 1
2𝜇𝑇 d(Σ−1𝜇)

= 𝑦𝑇
𝑖 Σ−1d𝜇 − 1

2d(𝜇)𝑇 Σ−1𝜇 − 1
2𝜇𝑇 Σ−1d𝜇

= 𝑦𝑇
𝑖 Σ−1d𝜇 − 1

2𝜇𝑇 Σ−1d𝜇 − 1
2𝜇𝑇 Σ−1d𝜇

= 𝑦𝑇
𝑖 Σ−1d𝜇 − 𝜇𝑇 Σ−1d𝜇

= (𝑦𝑖 − 𝜇)𝑇 Σ−1d𝜇

If we sum over the 𝑛 terms of the log-likelihood we get:

𝜕ℓ𝑌 (𝜇, Σ ∣ 𝑦𝑖)
𝜕𝜇 = (∑

𝑖
𝑦𝑖 − 𝑛𝜇)𝑇 Σ−1

leading to the MLE for 𝜇:
̂𝜇 = 1

𝑛 ∑
𝑖

𝑦𝑖

It’ll be useful to write the log-likelihood a bit differently to find the MLE for $�. Remember
that det 𝐴−1 = (det 𝐴)−1. This will enable us to write everything in terms of Σ−1 instead
of Σ:

ℓ𝑌 (𝜇, Σ ∣ 𝑦𝑖) = 1
2 log(det Σ−1) − 1

2(𝑦𝑖 − 𝜇)𝑇 Σ−1(𝑦𝑖 − 𝜇)

Also remember that tr(𝐴) = ∑𝑖 𝐴𝑖𝑖, tr(𝐴 + 𝐵) = tr(𝐴) + tr(𝐵), and that 𝑓(𝑥) = tr(𝑓(𝑥))
for a univariate function 𝑓(𝑥). Finally, recall that tr(𝐴𝐵𝐶) = tr(𝐶𝐴𝐵) = tr(𝐵𝐶𝐴). This
will let us rewrite the

Putting all this together allows us to write the log-likelihood for the multivariate normal as
such:

ℓ𝑌 (𝜇, Σ ∣ 𝑦𝑖) = 1
2 log(det Σ−1) − 1

2tr ((𝑦𝑖 − 𝜇)(𝑦𝑖 − 𝜇)𝑇 Σ−1)

For the partial derivative of det Σ−1 with respect to Σ−1, we get

𝜕 det Σ−1

𝜕Σ−1 = det Σ−1((Σ−1)−1)𝑇
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and for the partial derivative of tr(𝐴𝐵) with respect to 𝐵 we get 𝐴𝑇 , so the partial derivative
with respect to Σ−1 of the log-likelihood gives us:

𝜕ℓ𝑌 (𝜇, Σ ∣ 𝑦𝑖)
𝜕Σ−1 = 1

2Σ − 1
2(𝑦𝑖 − 𝜇)(𝑦𝑖 − 𝜇)𝑇

Summing over the 𝑛 terms gives:
𝜕ℓ𝑌 (𝜇, Σ ∣ 𝑌 )

𝜕Σ−1 = 𝑛
2 Σ − 1

2 ∑
𝑖

(𝑦𝑖 − 𝜇)(𝑦𝑖 − 𝜇)𝑇

Σ̂ = 1
𝑛 ∑𝑖(𝑦𝑖 − ̂𝜇)(𝑦𝑖 − ̂𝜇)𝑇

Normal repeated measures modesl

In many longitudinal studies where some outcome of interest is measured for participants 𝐾
times, the following model may describe the data generating process well, where 𝑦𝑖 ∈ R𝐾

and 𝑋𝑖 is a 𝐾 × 𝑚 design matrix:

𝑦𝑖 ∣ 𝑋𝑖 ∼ Normal(𝑋𝑖𝛽, Σ(𝜓))
The textbook lists several models that could describe different scenarios. 1. Independent-
but-not-identically-distributed observations within groups:

𝑦𝑖𝑘 ∣ (𝑋𝑖)𝑘 = (𝑋𝑖)𝑘𝛽 + 𝜖𝑖𝑘
𝜖𝑖𝑘 ∼ Normal(0, 𝜎2

𝑘)
𝜖𝑖𝑘 ⟂⟂ 𝜖𝑗𝑙∀𝑖 ≠ 𝑗 ∪ 𝑘 ≠ 𝑙

This implies the following simple structure for Σ(𝜓) above:

Σ(𝜓) = diag(𝜎2
1, … , 𝜎2

𝐾).
2. Compound symmetry (I’ll call this a random intercept model):

𝑦𝑖𝑘 ∣ (𝑋𝑖)𝑘 = (𝑋𝑖)𝑘𝛽 + 𝛾𝑖 + 𝜖𝑖𝑘
𝜖𝑖𝑘 ∼ Normal(0, 𝜎2)
𝜖𝑖𝑘 ⟂⟂ 𝜖𝑗𝑙∀𝑖 ≠ 𝑗 ∪ 𝑘 ≠ 𝑙
𝛾𝑖 ∼ Normal(0, 𝜏2)
𝛾𝑖 ⟂⟂ 𝛾𝑗∀𝑖 ≠ 𝑗
𝛾𝑖 ⟂⟂ 𝜖𝑖𝑗∀𝑗

Conditional on 𝑋𝑖, the covariance between 𝑦𝑖𝑘 and 𝑦𝑖𝑗 is:

Cov(𝑦𝑖𝑘, 𝑦𝑖𝑗 ∣ 𝑋𝑖) = Cov((𝑋𝑖)𝑘𝛽 + 𝛾𝑖 + 𝜖𝑖𝑘, (𝑋𝑖)𝑗𝛽 + 𝛾𝑖 + 𝜖𝑖𝑗 ∣ 𝑋𝑖)
= 𝜏2

While the variance is 𝜏2 + 𝜎2. This implies that we can write the variance-covariance
matrix as

Σ(𝜓) = 𝜏21𝐾1𝑇
𝐾 + 𝜎2𝐼𝐾.
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3. Autoregressive (I’ll call this a random intercept model):

𝑦𝑖𝑘 ∣ (𝑋𝑖)𝑘 = (𝑋𝑖)𝑘𝛽 + 𝜖𝑖𝑘
𝜖𝑖𝑘 ∣ 𝜖𝑖,𝑘−1 ∼ Normal(𝜌𝜖𝑖,𝑘−1, 𝜎2)

𝜖𝑖1 ∼ Normal(0, 𝜎2

1 − 𝜌2 )

𝜖𝑖𝑘 ⟂⟂ 𝜖𝑗𝑙∀𝑖 ≠ 𝑗 ∩ ∀𝑘, 𝑙

This implies the following simple structure for Σ(𝜓):

Σ(𝜓)𝑖𝑗 = 𝜎2

1 − 𝜌2 𝜌|𝑖−𝑗|

4. Random effects model

This is a more general version of the random intercept model. Let 𝑧𝑘 ∈ R𝑞.

𝑦𝑖𝑘 ∣ (𝑋𝑖)𝑘 = (𝑋𝑖)𝑘𝛽 + 𝑧𝑇
𝑘 𝛾𝑖 + 𝜖𝑖𝑘

𝜖𝑖𝑘 ∼ Normal(0, 𝜎2)
𝜖𝑖𝑘 ⟂⟂ 𝜖𝑗𝑙∀𝑖 ≠ 𝑗 ∪ 𝑘 ≠ 𝑙
𝛾𝑖 ∼ Normal(0, Ω)
𝛾𝑖 ⟂⟂ 𝛾𝑗∀𝑖 ≠ 𝑗
𝛾𝑖 ⟂⟂ 𝜖𝑖𝑗∀𝑗

We can write this in matrix form as:

𝑦𝑖 ∣ 𝑋𝑖 = 𝑋𝑖𝛽 + 𝑍𝛾 + 𝜖𝑖

The conditional covariance is

Cov(𝑦𝑖 ∣ 𝑋𝑖) = Cov(𝑋𝑖𝛽 + 𝑍𝛾 + 𝜖𝑖 ∣ 𝑋𝑖)
= 𝑍Ω𝑍𝑇 + 𝜎2𝐼𝐾

MLEs in repeated measure models

The book suggests the following strategy to find the MLEs in the unstructured case, which
is 1 above:

Take 𝛽(0) and Σ(0) as initial guesses. Then for 𝑡 = 1 until some termination criterion
iterate:

𝛽(𝑡+1) = ∑
𝑖

(𝑋𝑇
𝑖 (Σ(𝑡))−1𝑋𝑖)−1𝑋𝑇

𝑖 (Σ(𝑡))−1𝑦𝑖
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and
Σ(𝑡+1) = 1

𝑛 ∑
𝑖

(𝑦𝑖 − 𝑋𝑖𝛽(𝑡))(𝑦𝑖 − 𝑋𝑖𝛽(𝑡))𝑇

We can derive these update rules from the log-likelihood, but we’ll need to rewrite the model
so that it looks a little more familiar.

The model as written in matrix form by unit 𝑖 is:

𝑦𝑖 ∣ 𝑋𝑖 = 𝑋𝑖𝛽 + 𝜖𝑖
𝜖𝑖 ∼ Normal(0, Σ)
𝜖𝑖 ⟂⟂ 𝜖𝑗∀𝑖 ≠ 𝑗

Let 𝑦 = (𝑦𝑇
1 , 𝑦𝑇

2 , … , 𝑦𝑇
𝑛 )𝑇 and let 𝑋 = (𝑋𝑇

1 , 𝑋𝑇
2 , … , 𝑋𝑇

𝑛 )𝑇 , and let 𝜖 = (𝜖𝑇
1 , 𝜖𝑇

2 , … , 𝜖𝑇
𝑛 )𝑇 .

Then the model can be written:

𝑦 ∣ 𝑋 = 𝑋𝛽 + 𝜖
𝜖 ∼ Normal(0, 𝐼𝑛 ⊗ Σ)

so Cov(𝜖) is block-diagonal:

⎡
⎢⎢
⎣

Σ 0 … 0
0 Σ … 0
0 0 ⋱ 0
0 0 … Σ

⎤
⎥⎥
⎦

The log-likelihood is:

ℓ𝑌 (𝜇, Σ ∣ 𝑦𝑖) = −1
2 log det(𝐼𝑛 ⊗ Σ) − 1

2(𝑦 − 𝑋𝛽)𝑇 (𝐼𝑛 ⊗ Σ)−1(𝑦 − 𝑋𝛽)

The determinant of 𝐼𝑛 ⊗ Σ is det(Σ)𝑛 because it’s just block-diagonal, and the inverse of
𝐼𝑛 ⊗ Σ is similarly 𝐼𝑛 ⊗ Σ−1.

Let’s focus on the 𝛽 terms. Expanding the quadratic form gives:

−1
2(𝑦𝑇 (𝐼𝑛 ⊗ Σ)−1𝑦 + 𝑦𝑇 (𝐼𝑛 ⊗ Σ)−1𝑋𝛽 − 1

2𝛽𝑇 𝑋𝑇 (𝐼𝑛 ⊗ Σ)−1𝑋𝛽

Taking the derivative with respect to 𝛽 gives:

𝑦𝑇 (𝐼𝑛 ⊗ Σ)−1𝑋d𝛽 − 1
2d𝛽𝑇 𝑋𝑇 (𝐼𝑛 ⊗ Σ)−1𝑋𝛽 − 1

2𝛽𝑇 𝑋𝑇 (𝐼𝑛 ⊗ Σ)−1𝑋d𝛽

Collecting terms gives:

(𝑦𝑇 (𝐼𝑛 ⊗ Σ−1)𝑋 − 𝛽𝑇 𝑋𝑇 (𝐼𝑛 ⊗ Σ)−1𝑋)d𝛽

This looks more daunting than it is, we can use block matrix multiplication to get:

(∑
𝑖

𝑦𝑇
𝑖 Σ−1𝑋𝑖 − 𝛽𝑇 ∑

𝑖
𝑋𝑇

𝑖 Σ−1𝑋)d𝛽
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If Σ were known, we could solve this equation simply:

̂𝛽 = (∑𝑖 𝑋𝑇
𝑖 Σ−1𝑋)−1(∑𝑖 𝑋𝑖Σ−1𝑦𝑖)

Like we did above, we can rewrite the likelihood in terms of Σ−1 to give:

ℓ𝑌 (𝜇, Σ ∣ 𝑦𝑖) = 𝑛
2 log det(Σ−1) − 1

2 ∑
𝑖

(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 Σ−1(𝑦𝑖 − 𝑋𝑖𝛽)

= 𝑛
2 log det(Σ−1) − 1

2 ∑
𝑖

tr(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 Σ−1(𝑦𝑖 − 𝑋𝑖𝛽)

= 𝑛
2 log det(Σ−1) − 1

2 ∑
𝑖

tr(𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 Σ−1

= 𝑛
2 log det(Σ−1) − 1

2 (∑
𝑖

tr(𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 ) Σ−1

Taking derivatives with respect to Σ−1 gives:

dℓ𝑌 (𝜇, Σ ∣ 𝑦𝑖) = 𝑛
2 Σ dΣ−1 − 1

2 ∑
𝑖

(𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 dΣ−1

= (𝑛
2 Σ − 1

2 ∑
𝑖

(𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 ) dΣ−1

Both of these derivatives have to be zero at the maximum likeihood estimate (assuming we’re
not on a boundary of the parameter space), so we’ll get two sets of equations:

Σ(𝑡+1) = 1
𝑛 ∑

𝑖
(𝑦𝑖 − 𝑋𝑖𝛽(𝑡))(𝑦𝑖 − 𝑋𝑖𝛽)𝑇

𝛽(𝑡+1) = (∑𝑖 𝑋𝑇
𝑖 (Σ(𝑡))−1𝑋𝑖)−1(∑𝑖 𝑋𝑖(Σ(𝑡))−1𝑦𝑖)

Magnus, Jan R, and Heinz Neudecker. 2019. Matrix Differential Calculus with Applications
in Statistics and Econometrics. John Wiley & Sons.
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