Missing data lecture 3: More ML and
Ignorability

Maximum likelihood for multivariate normal distribution

Let y; € RE |y, S Normal(u, ¥) for n samples so that the density for y, is

Fs |1 2) = 2m) 5 (der ) exp (5 — )75 g — ) )

The log-likelihood is:

1 1
by (1, [ y;) = 5 logdet ¥ — S (y; — ) TSy, — )

The book gives the expressions for the MLEs of the mean and covariance matrix of the
multivariate normal distribution without details. Going through the algebra can be useful
for other more complicated problems. But in order to do so, we’ll need a slight change to
how we’re used to thinking about partial differentiation. The following blurb on differentials
is based on Magnus and Neudecker (2019).

Differentials and matrix differentiation

It all starts with rearranging the derivative:

f/(C>:hH1 f(C—f—U)—f(C),

u—0 u

to get a linear approximation to f at the point c:

flet+u) = f(e) + f(e)u+r.(u)

re(u)

w0 ~5— = 0. This is the one term Taylor expansion of the function

where r,(u) = o(u) or lim
f at ¢+ u about c.



Bringing f(u) to the left-hand side gives: f(c+u)— f(u) = f'(c)u+r,(u). We can define the
change in the linear approximation of f from ¢ to ¢ + u as df(c; u), or the first differential
of f at ¢ with increment w:

df(c;u) = uf’(c)
Subbing this back into the linear approximation for f gives:

fle+u) = fle) +df(cu) +r.(u)

We can identify the differential by finding the linear approximation to a function at c:
fle+u) = fle) + autr.(u).

If we can find an « that depends on ¢ but not on w such that r.(u) = o(u) we say that

a= f'(c).

Let f now be a function R™ — R and let the differential be constructed via the same

argument as above, but now let ¢,u € R™, and define r_(u) such that lim,_,, %ﬁ =0:

flet+u) = fe) + Alc)u + r.(u).
If we equate the row vector A(c) with the partial derivative of f with respect to u, we can
recognize this as the multivariate Taylor expansion of f(c + u) around f(c).

Let’s compute the differential of f(z,y) = 27y for z,y € R™.
d(z"y)
We could do this via the following

(uy, + ;)" (u, +¢,) = e, + clu, +ule, +ulu,

The vector A(c) here s (¢}, ¢]) assuming we’ve ordered our variables as (u,, u,). We can see
T
this from the fact that cfcy is the evaluation of f at ¢, ¢, and that lim,, , _q % =
7y Uy || +]uy,
0.

We could also recognize the fact that our variables partition naturally into two vectors, x
and y. When we have a natural partition of variables u into u; and uy, we can write the
differential for f(u) more easily in terms of two differentials:

df(c; u) = A(c)u
= Aley)uy + Aleg)uy

which just differentiates between the two sets of variables, so that A(c,) is the partial deriva-
tive of f with respect to u; and A(c,) is the partial derivative with respect to wus.



In the example above, f(z,y) = 2Ty, we can write:

d(zTy) = :I:Tuy +uly

— T T
=T U, T Y Uy

This is important for thinking about differentials of log-likelihoods like the multivariate
normal where we’ll have two sets of parameters that we’d like to find the partial derivatives
with respect to, X and pu:

1 1
by(p, X | y) = 5 logdet ¥ — 2 (y; — ISy, — )

1 1
dly (p, % | y) = d(logdet ¥) — 5d((y; — )" 57 y; — )
We can generalize to vector functions: Let f(x) : R™ - R™
fle+u) = fle) + Alc)u +r(u).

(u)/YuY = 0. Then df(c;) = A(c)u is the differential of f evaluated at ¢ of

for lim, 7,
increment u.

The same idea applies to matrices, when combined with the vec function, which concatenates

an n X p matrix column by column into an n x p-length vector. Let F' be a matrix function
R™*? - R™*P, Let C' and U be in R™*%. If A(C) € R™P*"™ such that:

vec(F(C +U)) = vec(F(C)) + A(C)vec(U) + vec(R,(U)).

Then the m x p matrix dF'(C; U) is defined by vec(dF(C; U)) = A(C)vec(U).

The reason to do this is because the differential generalizes to matrices a bit easier than
do partial derivatives. This is because it isn’t clear along which dimensions the partial
derivatives should lie: Should the partials of a matrix function become a third dimension,
like a 3-d array?

Under this framework, the rows of the matrices A(c) and A(C') correspond to a dimension
of the range of the function f(c) or F(C'), while the columns correspond to a dimension of
the domain.

The power of the differentials is clear from the chain rule, which is called Cauchy’s rule of
invariance in differential-land. This just means that if b = f(c) and h = g(b) the differential
of h is:
d(h; w) = d(h; d(f; ¢))
= A, (b)As(c)u

if f:R™ > RPand g:RP - R"soh:R™ > R" then A4,(b) € R"*? and A;(c) € RP*™
and u € R™.



Differential with respect to p

First we’ll ignore the differential with respect to ¥. We’'ll expand out that quadratic form
into the parts that depend only on pu:

1
Sd(p"E )

by (. % | ) = yi 2 dp — 5

Taking the gradient with respect to p we get:

1 1
dly (1, 2 [ y;) = v} XM dp — Sd(p) S e — Spd(35 1)

2 2
1 1
=y X dp— 5d(w) S — opt N du

1 1
=y X dp = Spt R dp = opt R dp
=y X dp — p"E N dp

= (y; — )2 1dp

If we sum over the n terms of the log-likelihood we get:
ol )
Y“? ‘yz Zyz_nMTzl

leading to the MLE for u:

:%Z:yi

It'll be useful to write the log-likelihood a bit differently to find the MLE for $ . Remember
that det A=! = (det A)~!. This will enable us to write everything in terms of X! instead
of X:

1 1
by (1,2 | y;) = 5 log(det x> — 5 Wi — w)IEy; — )

Also remember that tr(A) = > Ay, tr(A + B) = tr(A) + tr(B), and that f(z) = tr(f(z))
for a univariate function f(x). Finally, recall that tr(ABC) = tr(CAB) = tr(BCA). This
will let us rewrite the

Putting all this together allows us to write the log-likelihood for the multivariate normal as
such:

1 1
by (1, % [ y;) = 5 log(det uh)— Str (v — m)(y; — HER

For the partial derivative of det ¥~ with respect to X71, we get

ddet X1

5 = det TS )T



and for the partial derivative of tr(AB) with respect to B we get AT, so the partial derivative
with respect to 7! of the log-likelihood gives us:
oy (X |y;) 1o 1
! =Y Z(y. — — )T
551 52— 5 Wi — 1)y —n)
Summing over the n terms gives:

oy (u,2]Y) n

1
e =y 2 Wi m— )"

3=

AN

Zi(yi — )(y; — ll)T

Normal repeated measures modesl

In many longitudinal studies where some outcome of interest is measured for participants K
times, the following model may describe the data generating process well, where 3y, € R¥
and X, is a K X m design matrix:

y; | X; ~ Normal(X,8,3(1)))

The textbook lists several models that could describe different scenarios. 1. Independent-
but-not-identically-distributed observations within groups:

Yir | (X = (Xi)wf + €,
€1, ~ Normal(0, o2)
€ L egVitjUk %1
This implies the following simple structure for ¥ (v) above:
Y(¢) = diag(o?, ..., 0%).
2. Compound symmetry (I'll call this a random intercept model):
Yir | (Xi)p = (Xi)uB + 7 + €
€;1. ~ Normal(0, o%)
7; ~ Normal(0, 72)
v ALy Vi# g
v AL €575
Conditional on X, the covariance between y,, and y,; is:
Cov(Yir, ¥ij | X;) = Cov((X;) B+ v + €1y (X3),;8 + 7 + €55 | X;)

While the variance is 72 4 2. This implies that we can write the variance-covariance
matrix as



3. Autoregressive (I'll call this a random intercept model):

Yie | (X)) = (X8 + €,
€in | €ik—1 "™ Normal(pei’k_l,UQ)
2
eil ~ Normal(O, 1——p2)
€ 1L €;Vi# jNVEk,

This implies the following simple structure for 3(¢)):

0.2

X(¢)i; = 1— 2 pli=l

4. Random effects model

This is a more general version of the random intercept model. Let z;, € RY.

Yir | (X = (X8 + 27 + €
€;1. ~ Normal(0, o%)
€ L€ VizjUk #1
~v; ~ Normal(0, 2)
Y ALy Vi # g
v AL Q‘jvj

We can write this in matrix form as:

v | Xy =X+ 2y +¢
The conditional covariance is

Cov(y; | X;) = Cov(X;8+ Zv +¢; | X;)
— 2027 + 021,

MLEs in repeated measure models

The book suggests the following strategy to find the MLEs in the unstructured case, which
is 1 above:

Take 59 and £(© as initial guesses. Then for ¢ = 1 until some termination criterion
iterate:

B = SUXT(R0) X XE(S0) Ny,

7
7



and .
N+l — Z — X8O (. — X.BNT
nE (y; — X;B8)(y; — X;8Y)

i
We can derive these update rules from the log-likelihood, but we’ll need to rewrite the model
so that it looks a little more familiar.

The model as written in matrix form by unit ¢ is:
yi | X; = XiB+e
¢; ~ Normal(0, X)
€; 1L ejVi 7

Let y = (yI,vd,...,90)T and let X = (XI, XL, ..., XI)T and let € = (], el ... DT,
Then the model can be written:

y| X =Xp+e
e ~ Normal(0, [, ® X)

so Cov(e) is block-diagonal:

oo oM
co Mo
Mo oo

The log-likelihood is:

b (1,8 | ) = —5logdet(L, %) — 3 (y = X5)7(I, @ 5)(y — Xp)

The determinant of I, ® ¥ is det(X)™ because it’s just block-diagonal, and the inverse of
I, ® Y is similarly I,, ® ¥

Let’s focus on the § terms. Expanding the quadratic form gives:

1 1
_§<yT<In ® E>_1y + yT(In ® Z)_IXB - §6TXT(In ® E)_lXﬁ

Taking the derivative with respect to 8 gives:
1 1
y" (I, ® %) ' Xdf — ZdF7XT (I, ® ) ' X6 — TXT(I, ® L) 1 XdB
Collecting terms gives:
(W7 (L, ® =X — ATXT(I, ® ) X)df
This looks more daunting than it is, we can use block matrix multiplication to get:

(X, — 4TS XIS X8



If ¥ were known, we could solve this equation simply:

=2, Xy tx)! (>, XX y,)

Like we did above, we can rewrite the likelihood in terms of £7! to give:

83 | ) = Flogdet(S) = 5 370, = X0, — X,6)

zglogdet ——Ztr ~X,8)7E Y (y, — X,8)

= Z logdet(X71) — = Z tr(y - X;8)Te

= logdet (Z tr(y —Xzﬂ)T> »-!

Taking derivatives with respect to ¥ =1 gives:

Aty (1,2 | ) = B8A5 — 2 32, — XB)(y; — X,p)Tds !

1

= (gZ - %ZJ:(% — X,B)(y; — Xzﬂ)T> dx—t

Both of these derivatives have to be zero at the maximum likeihood estimate (assuming we’re
not on a boundary of the parameter space), so we’ll get two sets of equations:

B = % > (i — X )(y — X,5)"
B = (3, X ()X (2, X (2) )
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