
Missing data lecture 4: Asymptotics of
MLEs and Some Bayes

MLEs in repeated measure models

Last class we talked about MLEs for a simple repeated measure model:

𝑦𝑖 ∣ 𝑋𝑖 = 𝑋𝑖𝛽 + 𝜖𝑖
𝜖𝑖 ∼ Normal(0, Σ)
𝜖𝑖 ⟂⟂ 𝜖𝑗∀𝑖 ≠ 𝑗

Let 𝑦 = (𝑦𝑇
1 , 𝑦𝑇

2 , … , 𝑦𝑇
𝑛 )𝑇 and let 𝑋 = (𝑋𝑇

1 , 𝑋𝑇
2 , … , 𝑋𝑇

𝑛 )𝑇 , and let 𝜖 = (𝜖𝑇
1 , 𝜖𝑇

2 , … , 𝜖𝑇
𝑛 )𝑇 .

Then the model can be written:

𝑦 ∣ 𝑋 = 𝑋𝛽 + 𝜖
𝜖 ∼ Normal(0, 𝐼𝑛 ⊗ Σ)

We showed that if Σ were known, we could write the MLE for 𝛽 as:

̂𝛽 = (∑𝑖 𝑋𝑇
𝑖 Σ−1𝑋)−1(∑𝑖 𝑋𝑖Σ−1𝑦𝑖)

We can also show that the MLE for Σ if 𝛽 were known is:

Σ = 1
𝑛 ∑

𝑖
(𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖)𝑇

Combining these two fact together, we can iteratively maximize the MLE by doing:

Σ(𝑡+1) = 1
𝑛 ∑

𝑖
(𝑦𝑖 − 𝑋𝑖𝛽(𝑡))(𝑦𝑖 − 𝑋𝑖𝛽)𝑇

𝛽(𝑡+1) = (∑𝑖 𝑋𝑇
𝑖 (Σ(𝑡))−1𝑋𝑖)−1(∑𝑖 𝑋𝑖(Σ(𝑡))−1𝑦𝑖)

Which is similar to what the book has.
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Inference for MLEs

We’ve shown that we can find a point in parameter space ̂𝜃 such that there is evidence
against any other point 𝜃 ≠ ̂𝜃 being the parameter that generated the data under an assumed
statistical model 𝑓𝑌 (𝑦𝑖 ∣ 𝜃).
How do assess the uncertainty in this point estimate? One way to think about this is to
consider the distribution of MLEs under different hypothetical datasets.

If we can characterize the distribution, we can build a confidence interval for 𝜃 that will
contain the true value of 𝜃 for some prescribed proportion of our hypothetical datasets.

Consider the model 𝑦𝑖
iid∼ Normal(𝜇, 𝜎2), where 𝜎2 is known one-dimensional normal model.

Then we know that ̂𝜇 = ̄𝑦, and that its distribution is ̄𝑦 ∼ Normal(𝜇, 𝜎2
𝑛 ). Using this

distribution, we can construct a statistic whose distribution doesn’t depend on any unknown
parameters. This is also known as a pivotal quantity.

√𝑛( ̄𝑦 − 𝜇)/𝜎 ∼ Normal(0, 1)

We know the cumulative distribution function for 𝑁(0, 1), Φ(𝑥) and we can use this distri-
bution to build a confidence interval for 𝜇:

𝑃(𝑧𝛼/2 < √𝑛( ̄𝑦 − 𝜇)/𝜎 < 𝑧1−𝛼/2)

where 𝑧𝑝 = Φ−1(𝑝) and 𝛼 is usually 0.05. Now we solve the system of inequalities for 𝜇 to
get our 1 − 𝛼 confidence interval:

𝑃(𝑧𝛼/2 < √𝑛( ̄𝑦 − 𝜇)/𝜎 < 𝑧1−𝛼/2) = 𝑃( 𝜎√𝑛𝑧𝛼/2 < ̄𝑦 − 𝜇 < 𝜎√𝑛𝑧1−𝛼/2)

= 𝑃( 𝜎√𝑛𝑧𝛼/2 − ̄𝑦 < −𝜇 < − ̄𝑦 + 𝜎√𝑛𝑧1−𝛼/2)

= 𝑃( ̄𝑦 − 𝜎√𝑛𝑧𝛼/2 > 𝜇 > ̄𝑦 − 𝜎√𝑛𝑧1−𝛼/2)

Because the distribution is symmetric, 𝑧𝛼/2 = −𝑧1−𝛼/2 which gives us:

𝑃( ̄𝑦 − 𝜎√𝑛𝑧1−𝛼/2 < 𝜇 < ̄𝑦 + 𝜎√𝑛𝑧1−𝛼/2)

Then the interval ( ̄𝑦 − 𝜎√𝑛𝑧1−𝛼/2, ̄𝑦 + 𝜎√𝑛𝑧1−𝛼/2) will contain 𝜇 in 0.95 of datasets generated
under the assumed 𝑁(𝜇, 𝜎2).
For all but the simplest models, the sampling distribution is intractable, but we can approx-
imate the distribution using asymptotics.

We’ll need the multivariate central limit theorem, which we’ll just take as a given:
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Theorem 1. Multivariate CLT

Suppose that 𝑋𝑖 are random vectors in 𝑅𝑑 with common mean 𝔼 [𝑋𝑖] = 𝜇 and co-
variance Σ = 𝔼 [(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)𝑇 ]. Let �̄� be the sample average of the 𝑋𝑖 with
�̄�𝑗 = ∑𝑖 𝑋𝑖𝑗/𝑛. Then as 𝑛 →∞:

√𝑛(�̄� − 𝜇) 𝑑→ Normal(0, Σ)

We can use this idea to get a pivotal quantity that involves the MLE for 𝜃 and the asymptotic
variance covariance matrix of the MLE. We’ll start with some key assumptions:

1. The MLE is consistent for 𝜃, which means that as we collect more samples the MLE
with converge in probability to 𝜃.

This will rule out the Neyman-Scott problem.

2. 𝑦𝑖 are iid with density 𝑓𝑌 (𝑦𝑖 ∣ 𝜃), 𝜃 ⊆ R𝑑

3. The support of the random variable 𝑦𝑖 doesn’t depend on 𝜃.

In our earlier presentation of how things can go wrong with MLE, having support that
depends on the value of the parameter can make things go awry, so we’ll assume that we’re
not in that scenario (like the 𝑦𝑖 ∼ Uniform(0, 𝜃)).

4. The true parameter 𝜃 is in the interior of the parameter space. This ensures that the
gradient of the likelihood value at the maximizer ̂𝜃 will be zero.

There are some more conditions on the gradient and hessian of the log-likelihood, but we’ll
assume that those are satisfied.

The gradient of the log-likelihood evaluated at the MLE ̂𝜃 can be expanded around the true
parameter value 𝜃†:

(∇𝜃ℓ𝑌 (𝜃 ∣ 𝑦)) ∣𝜃= ̂𝜃= ∇𝜃ℓ𝑌 (𝜃 ∣ 𝑦) ∣𝜃=𝜃† +∇2
𝜃ℓ𝑌 (𝜃 ∣ 𝑦) ∣𝜃=( ̃𝜃1,…, ̃𝜃𝑑) ( ̂𝜃 + 𝜃)

where ̃𝜃𝑗 lies on the cord between ̂𝜃 and 𝜃† and may differ by the index 𝑗 of the vector
∇𝜃ℓ𝑌 (𝜃 ∣ 𝑦) ∣𝜃= ̂𝜃.

To be precise, we have used the mean-value theorem on each coordinate 𝑗 of the gradient of
the log-likelihood with respect to 𝜃 evaluated at ̂𝜃: ∇𝜃ℓ𝑌 (𝜃 ∣ 𝑦) ∣𝜃= ̂𝜃:

𝜕ℓ𝑌 (𝜃 ∣ 𝑦)
𝜕𝜃𝑗

∣
𝜃= ̂𝜃

= 𝜕ℓ𝑌 (𝜃 ∣ 𝑦)
𝜕𝜃𝑗

∣
𝜃=𝜃†

+ ∇𝜃
𝜕ℓ𝑌 (𝜃 ∣ 𝑦)

𝜕𝜃𝑗
∣
𝜃= ̃𝜃𝑗

( ̂𝜃 − 𝜃)

and then constructed the matrix ∇2
𝜃ℓ𝑌 (𝜃 ∣ 𝑦) ∣𝜃=( ̃𝜃1,…, ̃𝜃𝑑) so that row 𝑗 of this matrix is the

vector ∇𝜃
𝜕ℓ𝑌 (𝜃∣𝑦)

𝜕𝜃𝑗
∣
𝜃= ̃𝜃𝑗

.
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Multiply both sides by 𝑛−1/2:

𝑛−1/2(∇𝜃ℓ𝑌 (𝜃 ∣ 𝑦)) ∣𝜃= ̂𝜃= 𝑛−1/2(∇𝜃ℓ𝑌 (𝜃 ∣ 𝑦)) ∣𝜃=𝜃† +𝑛−1/2(∇2
𝜃ℓ𝑌 (𝜃 ∣ 𝑦)) ∣𝜃=( ̃𝜃1,…, ̃𝜃𝑑) ( ̂𝜃 + 𝜃)

Note that ∇𝜃ℓ𝑌 (𝜃 ∣ 𝑦)) ∣𝜃= ̂𝜃= 0:

0 = 𝑛−1/2(∇𝜃ℓ𝑌 (𝜃 ∣ 𝑦)) ∣𝜃=𝜃† +
√𝑛
𝑛 (∇2

𝜃ℓ𝑌 (𝜃 ∣ 𝑦)) ∣𝜃=( ̃𝜃1,…, ̃𝜃𝑑) ( ̂𝜃 + 𝜃)

0 = 𝑛−1/2(∇𝜃ℓ𝑌 (𝜃 ∣ 𝑦)) ∣𝜃=𝜃† + 1
𝑛(∇2

𝜃ℓ𝑌 (𝜃 ∣ 𝑦)) ∣𝜃=( ̃𝜃1,…, ̃𝜃𝑑)
√𝑛( ̂𝜃 + 𝜃)

Solving for
√𝑛( ̂𝜃 − 𝜃):

√𝑛( ̂𝜃 + 𝜃) = (− 1
𝑛(∇2

𝜃ℓ𝑌 (𝜃 ∣ 𝑦)) ∣𝜃=( ̃𝜃1,…, ̃𝜃𝑑))
−1 √𝑛

𝑛 (∇𝜃ℓ𝑌 (𝜃 ∣ 𝑦)) ∣𝜃=𝜃†

Now that we have an expression for
√𝑛( ̂𝜃 − 𝜃), if we can derive an asymptotic distribution

for the right-hand side, we’ll have some hope of generating confidence sets for 𝜃. Because
the data are iid we can write the second term on the left-hand side as:

√𝑛 1
𝑛

𝑛
∑
𝑖=1

(∇𝜃ℓ𝑌 (𝜃 ∣ 𝑦𝑖)) ∣𝜃=𝜃†

This is just the average of the gradient of the log-likelihood scaled by
√𝑛. It turns out that

𝔼 [(∇𝜃ℓ𝑌 (𝜃 ∣ 𝑦𝑖)) ∣𝜃=𝜃†] = 0, under 𝑦𝑖 ∼ 𝑓𝑌 (𝑦𝑖 ∣ 𝜃), so

√𝑛 1
𝑛

𝑛
∑
𝑖=1

(∇𝜃ℓ𝑌 (𝜃 ∣ 𝑦𝑖)) ∣𝜃=𝜃†
𝑑→ Normal(0, 𝔼 [(∇𝜃ℓ𝑌 (𝜃 ∣ 𝑦𝑖)) ∣𝜃=𝜃† (∇𝜃ℓ𝑌 (𝜃 ∣ 𝑦𝑖)) ∣𝑇𝜃=𝜃†])

That expectation is a 𝑑 × 𝑑 matrix called the Fisher information of 𝑓𝑌 (𝑦𝑖 ∣ 𝜃):
I(𝜃†). It also turns out that, given conditions on the Hessian of the log-likelihood,
(− 1

𝑛(∇2
𝜃ℓ𝑌 (𝜃 ∣ 𝑦)) ∣𝜃=( ̃𝜃1,…, ̃𝜃𝑑))

−1
converges to probability to I(𝜃†)−1, or the inverse of the

Fisher information matrix.

If we have 𝑋 ∼ Normal(0, 𝐶), and we left-multiply 𝑋 by a matrix 𝐴, we’ll get: 𝐴𝑋 ∼
Normal(0, 𝐴𝐶𝐴𝑇 ).
This is because any linear combination of normal random variables is again normal, and the
normal distribution is a function of the mean and covariance only. Expectation is linear:

𝔼 [𝐴𝑋] = 𝐴𝔼 [𝑋] = 0

and covariance is 𝔼 [(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇 ] = 𝔼 [(𝑋𝑋𝑇 ] = 𝐶, so

𝔼 [(𝐴𝑋)(𝐴𝑋)𝑇 ] = 𝐴𝔼 [𝑋𝑋𝑇 ] 𝐴𝑇 = 𝐴𝐶𝐴𝑇
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We’ll also need the fact that for 𝑋𝑛
𝑝
→ 𝑋 and 𝑌𝑛

𝑑→ 𝑌 that 𝑋𝑛𝑌𝑛
𝑑→ 𝑋𝑌 .

Putting all this together gives:

(− 1
𝑛(∇2

𝜃ℓ𝑌 (𝜃 ∣ 𝑦)) ∣𝜃=( ̃𝜃1,…, ̃𝜃𝑑))
−1 √𝑛

𝑛 (∇𝜃ℓ𝑌 (𝜃 ∣ 𝑦)) ∣𝜃=𝜃†
𝑑→ Normal(0, I(𝜃†)−1I(𝜃†)I(𝜃†)−1)

the righthand side of which simplifies to:

Normal(0, I(𝜃†)−1)

Finally, putting everything together, we have the

√𝑛( ̂𝜃 − 𝜃) 𝑑→ Normal(0, I(𝜃†)−1)

Let’s say we want to get a confidence interval for a single parameter 𝜃1. Then we can build
an asymptotic confidence interval using the pivotal quantity strategy we had above:

𝑃( ̄𝑦 − 𝜎√𝑛𝑧1−𝛼/2 < 𝜇 < ̄𝑦 + 𝜎√𝑛𝑧1−𝛼/2)

But with ̄𝑦 equaling ̂𝜃1 and 𝜎 = √I( ̂𝜃)−1
1,1. It is sometimes hard to calculate the Fisher infor-

mation because it involves taking expectations of the negative Hessian of the log-likelihood
function. If we’d prefer, we can instead use an estimator for I( ̂𝜃) as

I( ̂𝜃) = − 1
𝑛 ∑

𝑖
∇2

𝜃ℓ𝑌 (𝜃 ∣ 𝑦𝑖)𝜃= ̂𝜃

The I should have a hat over it, but I can’t get the math to compile correctly when I add
the \hat over it.

There are ways to build multivariate confidence intervals, but I won’t go over those right
now, though they are covered in the book in Chapter 6.

Bayes

The machinery for Frequentist inference often relies on asymptotic arguments for complex
models. Bayesian inference, on the other hand, does not, and gives exact finite sample
inference. There are caveats though, which we’ll cover.

MLEs are concerned with finding a single point that, in some sense agrees with the dataset
at hand, though our inference depends on hypothetical replications of the experiment that
would generate alternative datasets. Bayesian inference requires that we characterize the
distribution of parameters that agree with the dataset at hand.

5



The idea of Bayesian inference starts with Bayes rule. Given a prior distribution 𝑝(𝜃) we
can combine that with the observational density of data 𝑓𝑌 (𝑦 ∣ 𝜃) to give us an updated
distribution 𝑝(𝜃 ∣ 𝑦) given the dataset at hand:

𝑝(𝜃 ∣ 𝑦) = 𝑓𝑌 (𝑦 ∣ 𝜃)𝑝(𝜃)
∫Ω𝜃

𝑓𝑌 (𝑦 ∣ 𝜃)𝑝(𝜃)𝑑𝜃

The nice thing about Bayesian inference is that we get a distribution over 𝜃 given the dataset
that we can now use to make probability statements about 𝜃. The statement With 0.95
probability 𝜃 is in the interval 𝐶 is just a manipulation of the posterior density: 𝑃(𝜃 ∈ 𝐶 ∣
𝑦) = ∫𝐶 𝑝(𝜃 ∣ 𝑦)𝑑𝜃.

Let’s look at a specific example: the standard 𝑦𝑖
iid∼ Bernuolli(𝜃) with 𝜃 ∼ Beta(𝛼, 𝛽).

The likelihood is:

∏
𝑖

𝜃𝑦𝑖(1 − 𝜃)1−𝑦𝑖 = 𝜃∑𝑖 𝑦𝑖(1 − 𝜃)𝑛−∑𝑖 𝑦𝑖

The prior for 𝜃 will be:

Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)𝜃𝛼−1(1 − 𝜃)𝛽−1

The numerator the posterior is the product of these two expressions, where we let 𝑠 = ∑𝑖 𝑦𝑖
for convenience:

Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)𝜃𝑠+𝛼−1(1 − 𝜃)𝑛−𝑠+𝛽−1

Integrating over 𝜃 will give us the denominator of our expression:

Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝑠)Γ(𝛽 + 𝑛 − 𝑠)
Γ(𝛼 + 𝛽 + 𝑛)

The ratio of the numerator and the denominator gives us:

Γ(𝛼+𝛽)
Γ(𝛼)Γ(𝛽)𝜃𝑠+𝛼−1(1 − 𝜃)𝑛−𝑠+𝛽−1

Γ(𝛼+𝛽)
Γ(𝛼)Γ(𝛽)

Γ(𝛼+𝑠)Γ(𝛽+𝑛−𝑠)
Γ(𝛼+𝛽+𝑛)

which simplifies to:
Γ(𝛼 + 𝛽 + 𝑛)

Γ(𝛼 + 𝑠)Γ(𝛽 + 𝑛 − 𝑠)𝜃𝑠+𝛼−1(1 − 𝜃)𝑛−𝑠+𝛽−1

This is just the Beta distribution with updated coefficients.

6



The prior mean is 𝛼
𝛼+𝛽 , while the posterior mean is 𝑠+𝛼

𝑛+𝛼+𝛽 . We can rewrite this to get a
better understanding of the posterior mean represents in this circumstance:

𝑠 + 𝛼
𝑛 + 𝛼 + 𝛽 = 𝛼

𝛼 + 𝛽
𝛼 + 𝛽

𝑛 + 𝛼 + 𝛽 + (1 − 𝛼 + 𝛽
𝑛 + 𝛼 + 𝛽) 𝑠

𝑛
This shows that the posterior mean is a weighted average of the prior mean and the data mean.
This sort of exemplifies what we would hope for from Bayesian inference, some adjudication
between the prior and the data. The posterior distribution is a Beta distribution, so we can
get probability statements easily by using qbeta in R.

We didn’t have to go through all of the marginalization above. We could have noticed that
the kernel of the posterior, namely the expression that depends on the unknown parmaeters,
had a familiar form:

𝑝(𝜃 ∣ 𝑠) ∝ 𝜃𝑠+𝛼−1(1 − 𝜃)𝑛−𝑠+𝛽−1

This is the kernel of the beta distribution, so we could have just stopped here and said that

𝑝(𝜃 ∣ 𝑠) ≡ Beta(𝛼 + 𝑠, 𝛽 + 𝑛 − 𝑠)

This procedure is aided by conjugate priors, which match the likelihood in a way; the func-
tional form of the prior slots into the way the parameters are expressed in the likelihood to
yield a family of posteriors that are in the same family as the prior.

These probabilities are “right” under our prior assumption. It may not be true for alternative
realizations of the data, or for alternative draws from the prior if the prior that generated
the data does not match 𝑝(𝜃).
There is another downside to using a prior. MLEs have a nice property called invariance,
namely that if ̂𝜃 is the MLE then the MLE for a function of 𝜃, say 𝑔(𝜃), is just 𝑔( ̂𝜃). This
isn’t true in Bayesian inference generally, because we’re now dealing with distributions rather
than points. So usually the posterior for 𝜃 won’t be the same as the posterior for 𝑔(𝜃): Let
𝜂 = 𝑔(𝜃), and assume for simplicity’s sake that 𝑔 is one-to-one. Then 𝜃 = 𝑔−1(𝜂). If 𝜃 has
posterior 𝑝(𝜃 ∣ 𝑦), the posterior for 𝑔(𝜃) is:

𝑝(𝑔−1(𝜂) ∣ 𝑦) det ∇𝜂𝑔−1(𝜂)
In fact, this is true of priors too! Given 𝑝(𝜃) and a transformation 𝜂 = 𝑔(𝜃) the prior for 𝜂
is:

𝑝(𝜂) = 𝑝(𝑔−1(𝜂)) det ∇𝜂𝑔−1(𝜂)
This is somewhat problematic if you think about how to represent ignorance. Let’s say you
want to learn about a parameter 𝜃 ∈ [0, 1]. The simplest prior for this is the flat prior
𝑝(𝜃) ∝ 1. That implies that 𝜃 is equally likely to be anywhere in the interval of [0, 1]. But
what does that imply about 𝜂 = 𝜃2? Well on [0, 1], 𝑔(𝑥) = 𝑥2 is one-to-one, and the inverse
is √𝑔(𝜂) = 𝜃. The derivative of √𝜂 is proportional to 𝜂−1/2, which implies a downward
sloping distribution on [0, 1]. But why would you have knowledge of 𝜃2 without knowledge
of 𝜃? It seems counterintuitive.
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The dyed-in-the-wool Bayesian would argue that there is no such thing as true ignorance, and
that the problem that you face will have consequences for where you expect your parameter
to lie. Suppose you’re modeling the proportion of Corvallis residents with synovial sarcoma,
which is a very rare cancer. You’re probably going to use a prior that favors small values of
𝜃.

What if instead you’re looking at the proportion of rainy days in Corvallis from November
to April? You’d probably use a prior that at the very least avoided 𝜃 near 0.
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