
Missing data lecture 5: Bayes

Bayes recap

MLE invariance

If ̂𝜃 is the MLE then the MLE for a function of 𝜃, say 𝑔(𝜃), is just 𝑔( ̂𝜃).
Bayesian (in)variance:

Let 𝜂 = 𝑔(𝜃), and assume for simplicity’s sake that 𝑔 is one-to-one. Then 𝜃 = 𝑔−1(𝜂). If 𝜃
has posterior 𝑝(𝜃 ∣ 𝑦), the posterior for 𝑔(𝜃) is:

𝑝(𝑔−1(𝜂) ∣ 𝑦) det ∇𝜂𝑔−1(𝜂)

This can lead to contradictions under “ignorance”.

This presentation follows Gelman et al. (2013) somewhat.

There are priors called Jeffreys’ priors (for Harold Jeffreys) that are invariant to reparame-
terizations. Remember that the Fisher information, or:

I(𝜃) = 𝔼 [∇𝜃ℓ𝑌 (𝜃 ∣ 𝑦)∇𝜃ℓ𝑌 (𝜃 ∣ 𝑦)𝑇 ]

under a reparameterization 𝜂 = 𝑔(𝜃) with Jacobian (𝐽𝜂,𝜃)𝑖𝑗 = 𝜕𝜂𝑖
𝜕𝜃𝑗

is:

I(𝜃(𝜂)) = 𝐽𝑇
𝜂,𝜃𝔼 [(∇𝜃ℓ𝑌 (𝜃 ∣ 𝑦)) ∣𝜃=𝑔−1(𝜂) ∇𝜃(ℓ𝑌 (𝜃 ∣ 𝑦) ∣𝑇𝜃=𝑔−1(𝜂))] 𝐽𝜂,𝜃

For 𝜂 = 𝑔(𝜃), assume for simplicity that 𝑔 is one-to-one, then a prior for 𝜃 that is propor-
tional to the square root of the determinant of the Fisher information will be invariant to
reparameterization:

𝑝(𝜃) ∝ det(I(𝜃))1/2

Why is this the case? Because under the change of measure formula above the prior for 𝜂
is:

𝑝(𝜂) ∝ 𝑝(𝑔−1(𝜂)) det 𝐽𝜂,𝜃
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which is
𝑝(𝜂) ∝ det I(𝑔−1(𝜂))1/2 det 𝐽𝜂,𝜃

∝ det(𝐽𝜂,𝜃)1/2 det I(𝑔−1(𝜂))1/2 det(𝐽𝜂,𝜃)1/2

∝ det(𝐽𝑇
𝜂,𝜃)1/2 det I(𝑔−1(𝜂))1/2 det(𝐽𝜂,𝜃)1/2

∝ det(𝐽𝑇
𝜂,𝜃I(𝑔−1(𝜂))1/2𝐽𝜂,𝜃)1/2

∝ det(I(𝜂))1/2

Thus giving some sense of invariance under a coordinate change. As stated in Gelman et al.
(2013), more or less:

Any rule for determining the prior density 𝑝(𝜃) should yield an equivalent result
if aplied to the transformed parameter; that is, 𝑝(𝜂) generated using 𝑝(𝜃) using
the change of measure formula should yield the same prior as would have been
obtained directly from the model 𝑝(𝜂)𝑝(𝑦 ∣ 𝜂)

One issue with Jeffreys’ prior is that it is dependent on a likelihood, which can be contro-
versial.

For the Bernoulli trial example from last class, the Jeffreys prior is Beta(1/2, 1/2).

Frequentist coverage?

Posterior probabilities are strictly “right” under our prior assumption because of the math
of Bayes’ theorem. However, if we take a Frequentist view of probability, namely that prob-
abilities are defined as limiting proportions of events, we’ll need to think about alternative
draws of our prior and of our data.

The coverage of our posterior credible intervals will only match the nominal probabilities if
the prior we use for our analysis matches that which generated the data. We can show this
as computing the marginal posterior 𝑝(𝜃 ∣ 𝑦) under repeated draws from the prior and data
distribution 𝑝(𝑦 ∣ 𝜃), which is the distribution associated with the density 𝑓𝑌 (𝑦 ∣ 𝜃) we’ll use
in our posterior:

𝜃′ ∼ 𝑝(𝜃)
𝑦 ∼ 𝑝(𝑦 ∣ 𝜃′)
𝜃 ∼ 𝑝(𝜃 ∣ 𝑦)

Another way to represent this sampling diagram is through integrals:
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∫
Ω𝜃

∫
Y

𝑝(𝜃)𝑓𝑌 (𝑦 ∣ 𝜃)
∫Ω𝜃

𝑝(𝜃)𝑓𝑌 (𝑦 ∣ 𝜃)𝑑𝜃𝑓𝑌 (𝑦 ∣ 𝜃′)𝑝(𝜃′)𝑑𝑦 𝑑𝜃′ = ∫
Y

∫
Ω𝜃

𝑝(𝜃)𝑓𝑌 (𝑦 ∣ 𝜃)
∫Ω𝜃

𝑝(𝜃)𝑓𝑌 (𝑦 ∣ 𝜃)𝑑𝜃𝑓𝑌 (𝑦 ∣ 𝜃′)𝑝(𝜃′)𝑑𝜃′ 𝑑𝑦

= ∫
Y

𝑝(𝜃)𝑓𝑌 (𝑦 ∣ 𝜃)
∫Ω𝜃

𝑝(𝜃)𝑓𝑌 (𝑦 ∣ 𝜃)𝑑𝜃 ∫
Ω𝜃

𝑓𝑌 (𝑦 ∣ 𝜃′)𝑝(𝜃′)𝑑𝜃′ 𝑑𝑦

= ∫
Y

𝑝(𝜃)𝑓𝑌 (𝑦 ∣ 𝜃)

= 𝑝(𝜃)

See Talts et al. (2018) for more info about how we can use this identity to test whether our
algorithms are working correctly.

Bayes computation

Like Frequentist confidence intervals, we can only compute 𝑝(𝜃 ∣ 𝑦) exactly under special cir-
cumstances, like conjugate priors. The reason for this is that the integral in the denominator
is usually intractable.

We will usually have to do approximate inference on Bayesian models by using Markov Chain
Monte Carlo samplers, which iteratively generate samples that converge in distribution to the
true posterior distribution. Bayesian approximate methods instead operate on an expression
that is proportional to the posterior:

𝑝(𝜃 ∣ 𝑦) ∝ 𝑓𝑌 (𝑦 ∣ 𝜃)𝑝(𝜃)

One way to think about the MLE is that it is the posterior mode under a prior of 𝑝(𝜃) ∝ 1:

𝑝(𝜃 ∣ 𝑦) ∝ 𝑓𝑌 (𝑦 ∣ 𝜃)

The difference between the likelihood 𝐿𝑌 (𝜃 ∣ 𝑦) and the posterior 𝑝(𝜃 ∣ 𝑦) lies in how we
treat the expression. In MLE we’re going to maximize the likelihood. In Bayesian inference
we care about the full distribution of 𝜃.

This gives some intuition about Bayesian inference. We can think of doing MLE and penal-
izing certain values of 𝜃:

ℓ𝑌 (𝜃 ∣ 𝑦) + penalty(𝜃)
that will allow the maximizer to favor certain values of 𝜃 over others.

If we look at the implied log-posterior ignoring the constant that doesn’t depend on 𝜃:

log 𝑝(𝜃 ∣ 𝑦) = log 𝑓𝑌 (𝑦 ∣ 𝜃) + log 𝑝(𝜃)
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If we maximize this expression we can rewrite this as

log 𝑝(𝜃 ∣ 𝑦) = ℓ𝑌 (𝜃 ∣ 𝑦) + log 𝑝(𝜃)

and we get the penalized likelihood expression where the penalty is a probability density.

One question might be: ok, we have a full distribution for 𝜃. What do we do with it? While
the MLE is a single choice, we now have myriad choices for point estimates derived from
Bayesian models. We could use the posterior mean:

𝔼 [𝜃 ∣ 𝑦]

We could use the posterior median, 𝜃𝑚:

𝑃(𝜃 > 𝜃𝑚 ∣ 𝑦) = 𝑃(𝜃 ≤ 𝜃𝑚 ∣ 𝑦) = 1/2.

We could use another posterior quantile. We could use the mode of the posterior as well.

Asymptotically, one might hope that the Bayesian estimates converge to the Frequentist esti-
mates, and this is true, though one needs to be careful in scenarios where the dimensionality
of the parameter space increases with sample size and about how one uses priors.

In Frequentist inference, the only limits on the parameter space come from the likelihood;
the normal density requires that 𝜇 ∈ R and 𝜎2 ∈ (0, ∞). In Bayesian inference, the prior
can also restrict the parameter space. For example, in the normal example, one could use a
prior for 𝜇 that enforced 𝜇 > 0. The posterior would then only be able to represent 𝜇 > 0.
If the true 𝜇 were negative, a Bayesian point-estimator wouldn’t converge to the true 𝜇.

While the prior adds an extra degree of freedom which seems dangerous, it can yield better
estimates when there are small datasets, because there isn’t as much information in the data.
An example of this would be a simple regression model:

𝑦𝑖 ∼ Normal(𝑋𝑇
𝑖 𝛽, 𝜎2)

We might have some good information that we don’t expect 𝛽 to be nearly infinite, and in
fact we expect it to be pretty well concentrated to [−10, 10]. Then we could use independent
Normal(0, 52) priors for the regression coefficients.

Linear regression with conjugate priors

This and the following section follow Chapter 2 in Rossi, Allenby, and Misra (2024) quite
closely.

Let’s look at the linear regression model with conjugate priors.

𝑦𝑖 = 𝑥𝑇
𝑖 𝛽 + 𝜖𝑖, 𝜖𝑖

iid∼ Normal(0, 𝜎2)
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where 𝑥𝑖 ∈ R𝑝. A full model would imply a model for 𝑥𝑖 as well:

𝑓𝑋,𝑌 ((𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) ∣ 𝛽, 𝜓) = ∏
𝑖

𝑓𝑋(𝑥𝑖 ∣ 𝜓)𝑓𝑌 (𝑦𝑖 ∣ 𝑥𝑖, 𝛽, 𝜎2)

If we have a prior for 𝜓, 𝛽, 𝜎2 that is independent, 𝑝(𝜓, 𝛽, 𝜎2) = 𝑝(𝜓)𝑝(𝛽, 𝜎2), then the
posterior will factorize into independent distributions as well:

𝑝(𝛽, 𝜓, 𝜎2 ∣ (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)) ∝ ∏
𝑖

𝑓𝑋(𝑥𝑖 ∣ 𝜓)𝑝(𝜓)𝑓𝑌 (𝑦𝑖 ∣ 𝑥𝑖, 𝛽, 𝜎2)𝑝(𝛽, 𝜎2)

∝ (∏
𝑖

𝑓𝑋(𝑥𝑖 ∣ 𝜓)𝑝(𝜓)) ∏
𝑖

𝑓𝑌 (𝑦𝑖 ∣ 𝑥𝑖, 𝛽, 𝜎2)𝑝(𝛽)

∝ 𝑝(𝜓 ∣ 𝑥1, … , 𝑥𝑛)𝑝(𝛽, 𝜎2 ∣ (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛))

Remember from last class how we could intuit the form of the joint prior if we examined the
likelihood for 𝜃 and chose a prior with the same functional form as that of the likelihood.

In the Bernoulli example, we had a likelihood of the form: 𝐿𝑌 (𝜃 ∣ 𝑦) = 𝜃𝑘(1 − 𝜃)𝑛−𝑘, where
𝑘 = ∑𝑖 = 𝑦, which suggested a prior of the form 𝜃𝑎(1 − 𝜃)𝑏, which we could regonize as a
Beta distribution.

We’ll do the same for the regression example. The likelihood for the linear model is:

(2𝜋𝜎2)−𝑛/2 exp ( 1
2𝜎2 ∑

𝑖
(𝑦𝑖 − 𝑥𝑇

𝑖 𝛽)2)

which can be simplified somewhat by writing the sum as a dot product between the vector
of errors, 𝑒 = 𝑦 − 𝑋𝛽 where 𝑦 = (𝑦1, … , 𝑦𝑛) and 𝑋𝑇 = (𝑥1, … , 𝑥𝑛).

(2𝜋𝜎2)−𝑛/2 exp ( 1
2𝜎2 (𝑦 − 𝑋𝛽)𝑇 (𝑦 − 𝑋𝛽))

We can rewrite the term (𝑦 − 𝑋𝛽)𝑇 (𝑦 − 𝑋𝛽) in terms of the least-squares estimator for 𝛽,
̂𝛽 = (𝑋𝑇 𝑋)−1𝑋𝑇 𝑦 by decomposing 𝑦 as 𝑦 = 𝑋 ̂𝛽 + 𝑦 − 𝑋 ̂𝛽:

(𝑦 − 𝑋𝛽)𝑇 (𝑦 − 𝑋𝛽) = (𝑋 ̂𝛽 + 𝑦 − 𝑋 ̂𝛽 − 𝑋𝛽)𝑇 (𝑋 ̂𝛽 + 𝑦 − 𝑋 ̂𝛽 − 𝑋𝛽)
= (𝑦 − 𝑋 ̂𝛽)𝑇 (𝑦 − 𝑋 ̂𝛽) + (𝑋𝛽 − 𝑋 ̂𝛽)𝑇 (𝑋𝛽 − 𝑋 ̂𝛽) − 2(𝑋𝛽 − 𝑋 ̂𝛽)𝑇 (𝑦 − 𝑋 ̂𝛽)
= (𝑦 − 𝑋 ̂𝛽)𝑇 (𝑦 − 𝑋 ̂𝛽) + (𝛽 − ̂𝛽)𝑇 𝑋𝑇 𝑋(𝛽 − ̂𝛽)

Let 𝑠2 = 1
𝑛−𝑝(𝑦 − 𝑋 ̂𝛽)𝑇 (𝑦 − 𝑋 ̂𝛽), and 𝜈 = 𝑛 − 𝑝, so we can rewrite the sum more compactly

as:
(𝑦 − 𝑋𝛽)𝑇 (𝑦 − 𝑋𝛽) = 𝜈𝑠2 + (𝛽 − ̂𝛽)𝑇 𝑋𝑇 𝑋(𝛽 − ̂𝛽)

This leads to a likelihood:
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𝐿𝑌 (𝛽, 𝜎2 ∣ 𝑦, 𝑋) ∝ (𝜎2)−𝜈/2 exp (𝜈𝑠2

2𝜎2 ) (𝜎2)−(𝑛−𝜈)/2 exp (− 1
2𝜎2 (𝛽 − ̂𝛽)𝑇 𝑋𝑇 𝑋(𝛽 − ̂𝛽))

Before we derive conjugate priors from this likelihood, we can see that the posterior under
flat priors for 𝛽 and a prior for 𝜎2, 𝜎−2, leads to a posterior:

𝑝(𝛽, 𝜎2 ∣ 𝑦, 𝑋) ∝ (𝜎2)−(𝜈/2+1) exp (𝜈𝑠2

2𝜎2 ) (𝜎2)−(𝑛−𝜈)/2 exp (− 1
2𝜎2 (𝛽 − ̂𝛽)𝑇 𝑋𝑇 𝑋(𝛽 − ̂𝛽))

which is a conditional normal posterior for 𝛽 with a scaled inverse chi-squared posterior for
𝜎2.

This suggests a conjugate prior of the form 𝑝(𝛽, 𝜎2) = 𝑝(𝜎2)𝑝(𝛽 ∣ 𝜎2):

𝑝(𝜎2) ∝ (𝜎2)−(𝜈0/2+1) exp (𝜈0𝑠0
2𝜎2 )

and a conditional normal prior for 𝛽:

𝑝(𝛽 ∣ 𝜎2) ∝ (𝜎2)−𝑝/2 exp (− 1
2𝜎2 (𝛽 − 𝜇0)𝑇 Σ−1

0 (𝛽 − 𝜇0))

This can be seen as the posterior from a regression run with a prior of 𝑝(𝜎2) ∝ 𝜎−2 and a
flat prior on 𝛽.

Then the posterior for 𝜎2, 𝛽 is simply the product of the priors and the likelihood, which we
write as above:

𝑝(𝛽, 𝜎2 ∣ (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)) ∝(𝜎2)−(𝜈0/2+1) exp (𝜈0𝑠0
2𝜎2 ) (𝜎2)−𝑝/2 exp (− 1

2𝜎2 (𝛽 − 𝜇0)𝑇 Σ−1
0 (𝛽 − 𝜇0))

(2𝜋𝜎2)−𝑛/2 exp ( 1
2𝜎2 (𝑦 − 𝑋𝛽)𝑇 (𝑦 − 𝑋𝛽))

This is definitley formidable, but we can simplify things a bit by collecting the terms with
𝛽:

(𝑦 − 𝑋𝛽)𝑇 (𝑦 − 𝑋𝛽) + (𝜇0 − 𝛽)𝑇 Σ−1
0 (𝜇0 − 𝛽)

and decomposing Σ−1
0 = 𝐿𝑇 𝐿, and noting that we can write the sum as the following inner

product:
[(𝑦 − 𝑋𝛽)𝑇 (𝐿𝜇0 − 𝐿𝛽)𝑇 ] [ (𝑦 − 𝑋𝛽)

𝐿𝜇0 − 𝐿𝛽)]

This can be further simplified by constructing a vector

𝑢 = [ 𝑦
𝐿𝜇0

]
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and a matrix 𝑊
𝑊 = [𝑋

𝐿]

and writing the expresssion as (𝑢 − 𝑊𝛽)𝑇 (𝑢 − 𝑊𝛽). We can then use the same trick as
above, by representing 𝑢 as the projection into the column space of 𝑊 and the residual:

(𝑊 ̄𝛽 + 𝑢 − 𝑊 ̄𝛽 − 𝑊𝛽)𝑇 (𝑊 ̄𝛽 + 𝑢 − 𝑊 ̄𝛽 − 𝑊𝛽)
The expression for ̄𝛽 is:

̄𝛽 = (𝑋𝑇 𝑋 + 𝐿𝑇 𝐿)−1(𝑋𝑇 𝑦 + 𝐿𝑇 𝐿𝜇0)
= (𝑋𝑇 𝑋 + Σ−1

0 )−1(𝑋𝑇 𝑦 + Σ−1
0 𝜇0)

Which simplifies as

(𝑢 − 𝑊 ̄𝛽)𝑇 (𝑢 − 𝑊 ̄𝛽) + (𝛽 − ̄𝛽)𝑇 𝑊 𝑇 𝑊(𝛽 − ̄𝛽)
and after some algebra comes to

(𝑦 − 𝑋 ̄𝛽)𝑇 (𝑦 − 𝑋 ̄𝛽) + (𝜇0 − ̄𝛽)𝑇 Σ−1
0 (𝜇0 − ̄𝛽) + (𝛽 − ̄𝛽)𝑇 (𝑋𝑇 𝑋 + Σ−1

0 )(𝛽 − ̄𝛽)

In the following, let 𝑛𝑠2 = (𝑦 − 𝑋 ̄𝛽)𝑇 (𝑦 − 𝑋 ̄𝛽) + (𝜇0 − ̄𝛽)𝑇 Σ−1
0 (𝜇0 − ̄𝛽). The posterior is:

𝑝(𝛽, 𝜎2 ∣ 𝑦, 𝑋) ∝(𝜎2)−(𝑛+𝜈0)/2+1 exp ((𝑛 + 𝜈0)(𝑛𝑠2 + 𝜈0𝑠2
0)/(𝑛 + 𝜈0)

2𝜎2 ) × (𝜎2)−𝑝/2

exp (− 1
2𝜎2 (𝛽 − ̄𝛽)𝑇 (𝑋𝑇 𝑋 + Σ−1

𝛽 )(𝛽 − ̄𝛽))

̄𝛽 = (𝑋𝑇 𝑋 + Σ−1
𝛽 )−1(Σ−1

𝛽 𝜇𝛽 + 𝑋𝑇 𝑋 ̂𝛽)
Like the Bernoulli problem, the posterior mean for 𝛽 is a weighted average between the
prior mean and the information from the likelihood, which in this case is the least-squared
estimator for 𝛽. This is often a consequence of using conjugate priors, that the posterior is
a compromise between the prior and the likelihood.

This implies the following distributions for 𝜎2 and 𝛽 ∣ 𝜎2:

𝜎2 ∼ Inv-𝜒2 (𝑛 + 𝜈0, 𝑛𝑠2 + 𝜈0𝑠2
0

𝑛 + 𝜈0
)

𝛽 ∣ 𝜎2 ∼ Normal( ̄𝛽, 𝜎2 (𝑋𝑇 𝑋 + Σ−1
0 )−1)

The posterior mean for 𝜎2 is:

𝔼 [𝜎2 ∣ 𝑦, 𝑋] = 𝑛 + 𝜈0
𝑛 + 𝜈0 − 2

𝑛𝑠2 + 𝜈0𝑠2
0

𝑛 + 𝜈0
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The expression for 𝑛𝑠2 is interesting because it involves the squared error of the posterior
linear predictor for 𝑦:

(𝑦 − 𝔼 [𝑋𝛽 ∣ 𝑦, 𝑋])𝑇 (𝑦 − 𝔼 [𝑋𝛽 ∣ 𝑦, 𝑋])𝑇 = (𝑦 − 𝑋𝔼 [𝛽 ∣ 𝑦, 𝑋])𝑇 (𝑦 − 𝑋𝔼 [𝛽 ∣ 𝑦, 𝑋])
= (𝑦 − 𝑋 ̄𝛽)𝑇 (𝑦 − 𝑋 ̄𝛽)

but it also involves the error in the prior mean with respect to the prior covariance matrix:

(𝜇0 − ̄𝛽)𝑇 Σ−1
0 (𝜇0 − ̄𝛽)

The effect of this term will decrease as the number of observations increases, but it elucidates
how the posterior mean of the error variance is decomposed into several pieces depending on
different aspects of the prior and the data.

Bayesian inference in repeated measure models

Two lectures ago we went through how to compute the MLE from this regression model:

𝑦𝑖 ∣ 𝑋𝑖 = 𝑋𝑖𝛽 + 𝜖𝑖
𝜖𝑖 ∼ Normal(0, Σ)
𝜖𝑖 ⟂⟂ 𝜖𝑗∀𝑖 ≠ 𝑗.

This required sequentially computing the MLE for 𝛽 given an estimate for Σ and computing
Σ̂ given the last estimate for ̂𝛽.

Let’s write down the likelihood for this model to see if we can come up with a conjugate
prior for the problem.

𝐿𝑌 (𝛽, Σ ∣ 𝑦, 𝑋) ∝ det(𝐼𝑛 ⊗ Σ)−1/2 exp (−1
2(𝑦 − 𝑋𝛽)𝑇 (𝐼𝑛 ⊗ Σ)−1(𝑦 − 𝑋𝛽))

If we start with the prior for 𝛽 ∣ Σ we can ignore the determinant and focus on the term in
the exponential:

−1
2(𝑦 − 𝑋𝛽)𝑇 (𝐼𝑛 ⊗ Σ)−1(𝑦 − 𝑋𝛽)

Let’s try a multivariate normal prior:

𝛽 ∼ Normal(𝜇0, Σ0)

so we can multiply the likelihood by the prior to get

−1
2 ((𝑦 − 𝑋𝛽)𝑇 (𝐼𝑛 ⊗ Σ)−1(𝑦 − 𝑋𝛽) + (𝛽 − 𝜇0)𝑇 Σ−1

0 (𝛽 − 𝜇0))
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which we’ll rewrite for convenience as

−1
2 ((𝐴(𝑦 − 𝑋𝛽))𝑇 𝐴(𝑦 − 𝑋𝛽) + (𝐿(𝛽 − 𝜇0))𝑇 𝐿(𝛽 − 𝜇0))

where 𝐴𝑇 𝐴 = (𝐼𝑛 ⊗ Σ)−1 and 𝐿𝑇 𝐿 = Σ−1
0 .

This looks familiar! We can use the same trick as we did above: create a new vector 𝑢 and
matrix 𝑊 :

𝑢 = [ 𝐴𝑦
𝐿𝜇0

] , 𝑊 = [𝐴𝑋
𝐿 ]

and can write

(𝑢 − 𝑊𝛽)𝑇 (𝑢 − 𝑊𝛽) = ((𝐴(𝑦 − 𝑋𝛽))𝑇 𝐴(𝑦 − 𝑋𝛽) + (𝐿(𝛽 − 𝜇0))𝑇 𝐿(𝛽 − 𝜇0)) .

Furthermore, write 𝑢 = 𝑊 ̄𝛽+𝑢−𝑊 ̄𝛽, where ̄𝛽 is the least-squares coeffients of the regression
of 𝑢 on 𝑊 :

̄𝛽 = (𝑊 𝑇 𝑊 + 𝐿𝑇 𝐿)−1𝑊 𝑇 𝑢 = (𝑋𝑇 (𝐼𝑛 ⊗ Σ)−1𝑋 + Σ−1
0 )−1(𝑋𝑇 (𝐼𝑛 ⊗ Σ)−1𝑦 + Σ−1

0 𝜇0)

This leads to (𝑢 − 𝑊 ̄𝛽)𝑇 𝑊 = 0, which allows us to cleanly partition (𝑢 − 𝑊𝛽)𝑇 (𝑢 − 𝑊𝛽)
into two pieces: 𝑢 − 𝑊 ̄𝛽 and 𝑊𝛽:

(𝑊 ̄𝛽 + 𝑢 − 𝑊 ̄𝛽−𝑊𝛽)𝑇 (𝑊 ̄𝛽 + 𝑢 − 𝑊 ̄𝛽 − 𝑊𝛽)
= (𝑢 − 𝑊 ̄𝛽 + 𝑊 ̄𝛽 − 𝑊𝛽)𝑇 (𝑢 − 𝑊 ̄𝛽 + 𝑊 ̄𝛽 − 𝑊𝛽)
= (𝑢 − 𝑊 ̄𝛽)𝑇 (𝑢 − 𝑊 ̄𝛽) + (𝑊 ̄𝛽 − 𝑊𝛽)𝑇 (𝑊 ̄𝛽 − 𝑊𝛽) + 2(𝑢 − 𝑊 ̄𝛽)𝑇 (𝑊 ̄𝛽 − 𝑊𝛽)
= (𝑢 − 𝑊 ̄𝛽)𝑇 (𝑢 − 𝑊 ̄𝛽) + (𝑊 ̄𝛽 − 𝑊𝛽)𝑇 (𝑊 ̄𝛽 − 𝑊𝛽)

where the last line follows because (𝑢 − 𝑊 ̄𝛽)𝑇 𝑊 = 0. Because we’re focusing only on the
posterior, which is a function of 𝛽 and not data, we can ignore the (𝑢 − 𝑊 ̄𝛽)𝑇 (𝑢 − 𝑊 ̄𝛽)
term because it does not involve 𝛽 and involves only functions of 𝑋, 𝑦, 𝐴, 𝐿, which are fixed
with respect to 𝛽.

We rewrite
(𝑊 ̄𝛽 − 𝑊𝛽)𝑇 (𝑊 ̄𝛽 − 𝑊𝛽)

as
(𝛽 − ̄𝛽)𝑇 𝑊 𝑇 𝑊(𝛽 − ̄𝛽) = (𝛽 − ̄𝛽)𝑇 (𝑋𝑇 (𝐼𝑛 ⊗ Σ)−1𝑋 + Σ−1)(𝛽 − ̄𝛽)

This shows that 𝛽 ∣ Σ is multivariate normal with:

𝛽 ∼ Normal( ̄𝛽, (𝑋𝑇 (𝐼𝑛 ⊗ Σ)−1𝑋 + Σ−1)−1)

Now let’s focus on the conditional distribution of Σ ∣ 𝛽. We’ll start with the likelihood
written in simpler terms:

𝐿𝑌 (𝛽, Σ ∣ 𝑦, 𝑋) ∝ det(Σ)−𝑛/2 exp (−1
2 ∑𝑖(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 Σ−1(𝑦𝑖 − 𝑋𝑖𝛽))
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We can use the trace trick to rearrange things:

𝐿𝑌 (𝛽, Σ ∣ 𝑦, 𝑋) ∝ det(Σ)−𝑛/2 exp (−1
2 ∑𝑖(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 Σ−1(𝑦𝑖 − 𝑋𝑖𝛽))

∝ det(Σ)−𝑛/2 exp (−1
2 ∑𝑖 tr((𝑦𝑖 − 𝑋𝑖𝛽)𝑇 Σ−1(𝑦𝑖 − 𝑋𝑖𝛽)))

∝ det(Σ)−𝑛/2 exp (−1
2 ∑𝑖 tr((𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 Σ−1))

∝ det(Σ)−𝑛/2 exp (−1
2tr((∑𝑖(𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 )Σ−1))

This suggests that a conjugate prior for Σ has the form:

𝑝(Σ) ∝ det(Σ)−𝑎/2 exp (−1
2tr(𝑉0Σ−1))

Fortunately, we’re in luck! The Inverse Wishart distribution has the density:

𝑝(Σ) ∝ det(Σ)−(𝜈0+𝑝+1)/2 exp (−1
2tr(𝑉0Σ−1))

Combining the likelihood with the prior we get something proportional to the conditional
posterior for Σ:

𝑝(Σ ∣ 𝑦, 𝑋, 𝛽) ∝ det(Σ)−(𝑛+𝜈0+𝑝+1)/2 exp (−1
2tr((𝑉0 + ∑𝑖(𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 )Σ−1))

Putting this together we get the following two conditional posteriors:

𝛽 ∣ Σ, 𝑦, 𝑋 ∼ Normal( ̄𝛽, (𝑋𝑇 (𝐼𝑛 ⊗ Σ)−1𝑋 + Σ−1)−1)
Σ ∣ 𝛽, 𝑦, 𝑋 ∼ Inverse-Wishart(𝑛 + 𝜈0, 𝑉0 + ∑𝑖(𝑦𝑖 − 𝑋𝑖𝛽)(𝑦𝑖 − 𝑋𝑖𝛽)𝑇 )

We can use the theory of integral operators to show that given intial conditions Σ0 and 𝛽0

the following algorithm for 𝑡 = 1, … , 𝑆:

𝛽𝑡+1 ∣ Σ𝑡, 𝑦, 𝑋 ∼ Normal( ̄𝛽, (𝑋𝑇 (𝐼𝑛 ⊗ Σ𝑡)−1𝑋 + (Σ𝑡)−1)−1)
Σ𝑡+1 ∣ 𝛽𝑡, 𝑦, 𝑋 ∼ Inverse-Wishart(𝑛 + 𝜈0, 𝑉0 + ∑𝑖(𝑦𝑖 − 𝑋𝑖𝛽𝑡)(𝑦𝑖 − 𝑋𝑖𝛽𝑡)𝑇 )
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