
Missing data lecture 6: MCMC and
diagnostics

Gibbs sampling

See Tanner and Wong (1987) for more details; what follows is an abbreviated presentation
of their work, with bits of Gelfand and Smith (1990) thrown in.

Let 𝑝(𝜃1, 𝜃2 ∣ 𝑦) be the posterior of interest.

We can represent the marginal posterior for 𝜃1 as:

𝑝(𝜃1 ∣ 𝑦) = ∫
Ω𝜃2

𝑝(𝜃1 ∣ 𝑦, 𝜃2)𝑝(𝜃2 ∣ 𝑦)𝑑𝜃2,

and similarly for 𝜃2:
𝑝(𝜃2 ∣ 𝑦) = ∫

Ω𝜃1

𝑝(𝜃2 ∣ 𝑦, 𝜃1)𝑝(𝜃1 ∣ 𝑦)𝑑𝜃1

Plugging the second expression into the first yields:

𝑝(𝜃1 ∣ 𝑦) = ∫
Ω𝜃2

𝑝(𝜃1 ∣ 𝑦, 𝜃2) ∫
Ω𝜃1

𝑝(𝜃2 ∣ 𝑦, 𝜃′
1)𝑝(𝜃′

1 ∣ 𝑦)𝑑𝜃′
1𝑑𝜃2,

which we can rearrange into:

𝑝(𝜃1 ∣ 𝑦) = ∫
Ω𝜃1

∫
Ω𝜃2

𝑝(𝜃1 ∣ 𝑦, 𝜃2)𝑝(𝜃2 ∣ 𝑦, 𝜃′
1)𝑑𝜃2𝑝(𝜃′

1 ∣ 𝑦)𝑑𝜃′
1,

Let 𝑃(𝜃 ∣ 𝜃𝑝𝑟𝑖𝑚𝑒) be the proposal distribution, which conditions on 𝜃′:

𝑃(𝜃 ∣ 𝜃′) = ∫
Ω𝜃2

𝑝(𝜃1 ∣ 𝑦, 𝜃2)𝑝(𝜃2 ∣ 𝑦, 𝜃′
1)𝑑𝜃2
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Then the equation
𝑔(𝜃1) = ∫

Ω𝜃1

𝑃(𝜃1 ∣ 𝜃′
1)𝑔(𝜃′

1)𝑑𝜃′
1,

is an integral equation. Given weak conditions on 𝑃(𝜃1 ∣ 𝜃′
1), 𝑝(𝜃1 ∣ 𝑦) is a unique solution

for the equation.

We can define the integral transformation: 𝑇 𝑔 = ∫Ω𝜃1
𝑃(𝜃1 ∣ 𝜃′

1)𝑔(𝜃′
1)𝑑𝜃′

1, which takes an 𝐿1

integrable function, ‖𝑔‖1 = ∫Ω𝜃1
|𝑔(𝜃1)| 𝑑𝜃1 < ∞ and yields another 𝐿1 integrable function.

One thing to note is that ‖𝑇 𝑔‖1 = ‖𝑔‖1, and, because 𝑃(𝜃 ∣ 𝜃′) is a probability density in 𝜃
for each 𝜃′, it integrates to 1,

∫
Ω𝜃1

|(𝑇 𝑔)(𝜃1)| 𝑑𝜃1 = ∫
Ω𝜃1

∫
Ω𝜃1

𝑃(𝜃1 ∣ 𝜃′
1)𝑔(𝜃′

1)𝑑𝜃′
1𝑑𝜃1

= ∫
Ω𝜃1

∫
Ω𝜃1

𝑃(𝜃1 ∣ 𝜃′
1)𝑑𝜃1𝑔(𝜃′

1)𝑑𝜃′
1

= ∫
Ω𝜃1

1𝑔(𝜃′
1)𝑑𝜃′

1

= ∫
Ω𝜃1

|𝑔(𝜃′
1)| 𝑑𝜃′

1

= ‖𝑔‖1

Also note that if 𝑓(𝜃) ≥ 𝑔(𝜃) for all 𝜃, then 𝑇 𝑓 ≥ 𝑇 𝑔 for all 𝜃.

𝑇 𝑓 − 𝑇 𝑔 = ∫
Ω𝜃1

𝑃(𝜃1 ∣ 𝜃′
1)𝑓(𝜃′

1)𝑑𝜃′
1 − ∫

Ω𝜃1

𝑃(𝜃1 ∣ 𝜃′
1)𝑔(𝜃′

1)𝑑𝜃′
1

= ∫
Ω𝜃1

𝑃(𝜃1 ∣ 𝜃′
1)(𝑓(𝜃′

1) − 𝑔(𝜃′
1))𝑑𝜃′

1

≥ 0
With these two facts, we can show that given a function 𝑔𝑖, 𝑔𝑖+1 = 𝑇 𝑔𝑖 and a solution, which
we’ll call 𝑔⋆ ≡ 𝑝(𝜃1 ∣ 𝑦), which solves the integral equation, that ‖𝑔𝑖+1 − 𝑔⋆‖ ≤ ‖𝑔𝑖 − 𝑔⋆‖.

‖𝑔𝑖+1 − 𝑔⋆‖ = ‖𝑇 (𝑔𝑖 − 𝑔⋆)‖
≤ ‖𝑇 |𝑔𝑖 − 𝑔⋆|‖
= ‖𝑔𝑖 − 𝑔⋆‖

There are two more conditions that lead to 𝑔⋆ being the unique solution to the equation, and
to another desirable characteristic for our computational schemes, which is called geometric
ergodicity:

‖𝑔𝑖+1 − 𝑔⋆‖ ≤ 𝛼𝑖(𝑔0)‖𝑔0 − 𝑔⋆‖, 𝛼 ∈ (0, 1)
as long as sup𝜃 𝑔0(𝜃)/𝑔⋆(𝜃) < ∞.
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This condition is the following: For every 𝜃0 ∈ Ω𝜃 there is an open neighborhood 𝑈 of 𝜃0 so
that:

𝑃(𝜃 ∣ 𝜃′) > 0, ∀(𝜃, 𝜃′) ∈ 𝑈

𝑃(𝜃 ∣ 𝜃′) ≤ 𝑀 < ∞ ∀(𝜃, 𝜃′) ∈ Ω𝜃

We can use this fact to show that the scheme will converge to 𝑝(𝜃1 ∣ 𝑦), the unique posterior
for 𝜃1, and the stationary distribution for the proposal 𝑃(𝜃 ∣ 𝜃′. I won’t go over the proof,
but you can see it in section 6 of Tanner and Wong (1987).

This suggests the following algorithm, which we’ll call Gibbs sampling, to generate draws
from an unknown posterior:

1. Determine starting values 𝜃0
1, 𝜃0

2

2. For 𝑡 = 1, … , 𝑆

a. Draw 𝜃𝑡+1
1 ∼ 𝑝(𝜃1 ∣ 𝜃𝑡

2, 𝑦)
b. Draw 𝜃𝑡+1

2 ∼ 𝑝(𝜃2 ∣ 𝜃𝑡+1
1 , 𝑦)

3. Discard 𝑆/2 iterations, and keep the set of draws {(𝜃𝑠
1, 𝜃𝑠

2) ∣ 𝑠 = 𝑆/2 + 1, , … , 𝑆}.

The final set of draws 𝑆/2 draws are approximately distributed according to 𝑝(𝜃1, 𝜃2 ∣ 𝑦)
The assumptions that make the algorithm work are key. Tanner and Wong (1987) note that
𝛼 is dependent on the starting distribution, and 𝛼 can be arbitrarily close to 1 for unbounded
parameter spaces.

The condition on the starting distribution mean that a 𝑔0 with compact support might be
a good choice, because we avoid a situation where sup𝜃 𝑔0(𝜃)/𝑔⋆(𝜃) is large because 𝑔0 has
tails that are heavier than those of 𝑔⋆(𝜃) as ‖𝜃‖ →∞.

The problem with Gibbs is that it often moves slowly in high dimensions when there is high
correlation between components.

Quantifying Uncertainty in MCMC estimates

Given a set of draws {𝜃𝑠, 𝑠 = 1, … , 𝑆} from a Gibbs sampler, we want a way to assess how
well our empirical average:

̄𝑓 = 1
𝑆

𝑆
∑
𝑠=1

𝑓(𝜃𝑠)

approximates the true expectation:

𝔼𝑝(𝜃∣𝑦) [𝑓(𝜃)]
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Under fairly general conditions,
√𝑛( ̄𝑓 − 𝔼 [𝑓]) 𝑑→ 𝑁(0, 𝜎2)

The wrinkle is that 𝜎2 wont equal Var𝑝(𝜃∣𝑦)(𝑓(𝜃)) because our draws aren’t independent. In
fact, as shown in Geyer (2005), we can compute the variance of the left-hand side:

Var(√𝑛( ̄𝑓 − 𝔼 [𝑓])) = 𝑛Var( ̄𝑓)

= 1
𝑛

𝑛
∑
𝑠=1

Var(𝑓(𝜃𝑠)) + 2
𝑛

𝑛−1
∑
𝑖=1

𝑛
∑

𝑗=𝑖+1
Cov(𝑓(𝜃𝑖), 𝑓(𝜃𝑗))

We’ll assume we have a stationary chain, so Var(𝑓(𝜃𝑠)) = 𝛾0, and 𝛾𝑘 = Cov(𝑓(𝜃𝑖), 𝑓(𝜃𝑖+𝑘)),
which leads to

1
𝑛

𝑛
∑
𝑠=1

Var(𝑓(𝜃𝑠)) + 2
𝑛

𝑛−1
∑
𝑖=1

𝑛
∑

𝑗=𝑖+1
Cov(𝑓(𝜃𝑖), 𝑓(𝜃𝑗)) = 𝛾0 + 2

𝑛
𝑛−1
∑
𝑖=1

𝑛
∑

𝑗=𝑖+1
𝛾𝑗−𝑖

= 𝛾0 + 2
𝑛

𝑛−1
∑
𝑖=1

(𝑛 − 𝑖)𝛾𝑖

If things are well-behaved, the series on the right converges to:

𝜎2 = 𝛾0 + 2
∞

∑
𝑖=1

𝛾𝑖

Thus,
√𝑛( ̄𝑓 − 𝔼 [𝑓]) 𝑑→ 𝑁(0, 𝛾0 + 2

∞
∑
𝑖=1

𝛾𝑖)

If we had independent draws of 𝜃𝑖, we would instead have
√𝑛( ̄𝑓 − 𝔼 [𝑓]) 𝑑→ 𝑁(0, 𝛾0)

The ratio of these variances:
𝛾0

𝛾0 + 2 ∑∞
𝑖=1 𝛾𝑖

= 1
1 + 2 ∑∞

𝑖=1
𝛾𝑖
𝛾0

Can be used to compute something called the effective sample size from an MCMC sample
of 𝑆 draws:

𝑛eff = 𝑛
1 + 2 ∑∞

𝑖=1 𝜌𝑘

where 𝜌𝑘 is the autocorrelation at the 𝑘th lag. The effective sample size represents the number
of independent draws with an equivalent variance to the samples from an MCMC chain.

These figures can be used to benchmark MCMC algorithms by computing 𝑛eff/sec of com-
puting time, or 𝑛eff/flop, where flop is floating point operation.
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Convergence diagnostics

One question we might have is how to assess if we’ve run enough iterations so that we’re draw-
ing from the stationary distribution. We won’t ever truly reach the stationary distribution,
because, as we can see above, we only “reach” the stationary distribution asymptotically.

However, we can use diagnostics to determine if there is any evidence that we haven’t con-
verged. The most common heuristic for this is called �̂�, which was proposed in Gelman and
Rubin (1992), and is thus called the Gelman-Rubin statistic, or R-hat.

The statistic relies on the fact that asymptotically, running the MCMC chain long enough
from any starting distribution will yield samples from the stationary distribution. Thus, if we
choose many well-dispersed starting points, and run our sampler for each starting point, the
samples generated from each starting point should be indistinguishable from each other.

TK: draw one example on the board of chains that would look stationary for a single chain,
but are not if we have two
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One way to assess differences between chains is to compare the within-chain variance for a
parameter of interest, say 𝜃 to the combined variance of all the chains. Let 𝜃(𝑠𝑚) be the draw
for 𝜃 from the 𝑚th chain out of 𝑀 chains at the 𝑠th iteration. Let ̄𝜃(.𝑚) = 1

𝑆 ∑𝑆
𝑠=1 𝜃(𝑠𝑚),

̄𝜃(..) = 1
𝑀 ∑𝑀

𝑚=1
̄𝜃(.𝑚). Let 𝑣𝑚 = 1

𝑆−1 ∑𝑆
𝑠=1(𝜃(𝑠𝑚) − ̄𝜃(.𝑚))2, and let 𝑊 = 1

𝑀 ∑𝑀
𝑚=1 𝑣𝑚. We

also compute the between-chain variance, so 𝐵 = 𝑆
𝑀−1 ∑𝑀

𝑚=1( ̄𝜃(.𝑚) − ̄𝜃(..))2

Then we estimate the variance of the posterior with the following consistent but biased
estimator:

v̂ar(𝜃 ∣ 𝑦) = 𝑆 − 1
𝑆 𝑊 + 𝐵

𝑆
We can see that this is likely an oversetimate of the variance because as 𝑆 →∞, 𝑣𝑚 → var(𝜃 ∣
𝑦), and the first factor converges to the same, while the second factor goes to zero.

The term 𝑊 underestimates the posterior variance for any finite 𝑆 because each chain hasn’t
explored the full extent of the tails of the distribution, and thus will have a smaller variance
than the true variance.
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The final expression for �̂� is

�̂� = √ v̂ar(𝜃 ∣ 𝑦)
𝑊

The statistic is calculated so that each chain in the above calculation is the first or second
half of a single chain. Thus, if we ran two MCMC chains, 𝑀 = 4 above.

The reason for this is to catch scenarios where each chain is nonstationary, but the chains
are marginally indistinguishable.
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The version that Stan uses is outlined here: Vehtari et al. (2021). It uses an �̂� that is
computed using normlized ranks, which means we compute the rank 𝑟(𝑠𝑚) of each draw
of a parameter with respect to the pooled draws from all the chains. Then the ranks are
trasnformed to z-scores using:

𝑧(𝑠𝑚) = Φ−1 (𝑟(𝑠𝑚) − 3/8
𝑆𝑀 + 1/4 )

Then the �̂� is computed using 𝑧(𝑠𝑚) in place of 𝜃(𝑠𝑚) above. This has the effect of making
the statistic useful in scenarios where there is an infinite mean (e.g. when we’re sampling
from a Cauchy distribution, or something with similarly heavy tails).
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