
Missing data lecture 7: Metropolis and
Hamiltonian Monte Carlo

MCMC and Gibbs sampling recap

Suppose we want to sample from a distribution 𝜋(𝜃) (for the rest of the lecture I’ll suppress
the dependence on 𝑦 unless otherwise noted), but we can’t easily do so, we might be able to
create a Markov Chain whose stationary distribution is 𝜋(𝜃).
The Markov Chain has the property that

𝑃(𝜃(𝑛) ∈ 𝐴 ∣ 𝜃(𝑛−1) = 𝑐𝑛−1, … , 𝜃(𝑛−1) = 𝑐1) = 𝑃(𝜃(𝑛) ∈ 𝐴 ∣ 𝜃(𝑛−1) = 𝑐𝑛−1)

and that
𝑃(𝜃(𝑛) ∈ 𝐴 ∣ 𝜃(𝑛−1) = 𝑐)

doesn’t depend on 𝑛.

This transition function has the property that for any value 𝑐 of 𝜃(𝑛−1), the function 𝑃(𝜃𝑛 ∈
𝐴 ∣ 𝜃(𝑛−1) = 𝑐) is a probability measure over whatever space 𝐴 is in, and for any fixed 𝐴,
𝑃(𝜃𝑛 ∈ 𝐴 ∣ 𝜃(𝑛−1) = 𝑥) is a measurable function of 𝑥.

In finite spaces, the transition function is just a matrix with (𝑖, 𝑗)th entry

What the proof from Tanner and Wong (1987) shows is that we can create a Markov Chain
with the stationary distribution 𝑝(𝜃) if we have a transition function 𝑃(𝜃 ∣ 𝜃′) with the
following properties:

1. 𝜋(𝜃) = ∫𝜃′ 𝑃(𝜃 ∣ 𝜃′)𝜋(𝜃′)𝑑𝜃′

2. 𝑃(𝜃 ∣ 𝜃′) ≤ 𝑀 < ∞ for all 𝜃, 𝜃′.

3. For every 𝜃0 ∈ Ω𝜃 there is an open neighborhood 𝑈 of 𝜃0 so that:

𝑃(𝜃 ∣ 𝜃′) > 0, ∀(𝜃, 𝜃′) ∈ 𝑈

1

and an initial distribution 𝑔(𝜃) that satisfies:

sup
𝜃

𝑔(𝜃)/𝜋(𝜃) < ∞

One way of showing condition 1 is by showing that a chain is reversible, namely that for two
sets 𝐴 and 𝐵:

∫
𝐴

𝜋(𝜃′) ∫
𝐵

𝑝(𝜃 ∣ 𝜃′)𝑑𝜃 𝑑𝜃′ = ∫
𝐵

𝜋(𝜃′) ∫
𝐴

𝑝(𝜃 ∣ 𝜃′)𝑑𝜃 𝑑𝜃′

We can represent ∫𝐵 𝑝(𝜃 ∣ 𝜃′)𝑑𝜃 as 𝑃(𝐵 ∣ 𝜃′) When 𝐴 is the whole parameter space, Ω𝜃 this
says something more interpretable:

∫
Ω𝜃

𝜋(𝜃′) ∫
𝐵

𝑝(𝜃 ∣ 𝜃′)𝑑𝜃 𝑑𝜃′ = ∫
𝐵

𝜋(𝜃′)𝑑𝜃′

This says: If I draw a value from the stationary distribution, and then draw a value from
the transition function, my probability of landing in the set 𝐵 is the same as if I had just
measured whether the first draw was in set 𝐵.

Metropolis sampler

This is all from Geyer’s notes on MCMC, Geyer (2005).

One way to construct a transition function that has this behavior is by using the Metropolis
algorithm.

1. Sample a new point 𝜃(2) ∣ 𝜃(1) with a proposal distribution that we can draw from,
𝐽(𝜃(2) ∣ 𝜃(1)), such that 𝐽(𝜃(1) ∣ 𝜃(2)) = 𝐽(𝜃(2) ∣ 𝜃(1)).

2. Accept the new point with probability min(𝑟, 1):

𝑟 = 𝜋(𝜃(2))
𝜋(𝜃(1))

else set the next step of the Markov Chain to 𝜃(1).

Crucially, this acceptance probability, which is called the Metropolis acceptance rate, can be
computed without regards to the normalizing constant of the probability density.

We can see this easily because it’s a ratio of the same density evaluated at two different
parameters. Let 𝜋(𝜃) = 𝑝(𝜃 ∣ 𝑦) where 𝑝(𝜃) is the prior for 𝜃, 𝑓𝑌 (𝑦 ∣ 𝜃) is the density of the
observations, and 𝑝(𝑦) = ∫𝜃 𝑝(𝜃)𝑓𝑌 (𝑦 ∣ 𝜃)𝑑𝜃:

2

𝑟 = 𝑝(𝜃(2) ∣ 𝑦)
𝑝(𝜃(1) ∣ 𝑦)

= 𝑝(𝜃(2), 𝑦)/𝑝(𝑦)
𝑝(𝜃(1), 𝑦)/𝑝(𝑦)

= 𝑝(𝜃(2), 𝑦)
𝑝(𝜃(1), 𝑦)

= 𝑝(𝜃(2))𝑓𝑌 (𝑦 ∣ 𝜃(2))
𝑝(𝜃(1))𝑓𝑌 (𝑦 ∣ 𝜃(1))

This is helpful, because we don’t know the normalizing constant 𝑝(𝑦) for most models we’re
interested in fitting.

What does the Metropolis algorithm imply for the transition density?

We need to compute the conditional measure 𝑃(𝐴 ∣ 𝜃(1)), which gives the probability of
landing in set 𝐴, or of drawing a value 𝜃(2) that is in set 𝐴 from the algorithm above.

There are two ways we can get to set 𝐴. The first way is if the proposed point 𝜃(2) is in set
𝐴 and the draw is accepted. The other way is if 𝜃(1) is in set 𝐴 and we reject the proposal
from 𝜃(1) → 𝜃(2).

The probability of acceptance for a single point 𝜃(2) given we started at 𝜃(1) is ℎ(𝜃(1), 𝜃(2)) =
min(𝑟(𝜃(1), 𝜃(2)), 1). The probability that we transition from 𝜃(1) → 𝜃(2) is given by

∫
𝐴

𝐽(𝜃 ∣ 𝜃(1))ℎ(𝜃(1), 𝜃)𝑑𝜃

The probability we accept any jump is the integral over the whole space, Ω𝜃:

𝑎(𝜃(1)) = ∫
Ω𝜃

𝐽(𝜃 ∣ 𝜃(1))ℎ(𝜃(1), 𝜃)𝑑𝜃

Then the probability that we reject the proposal at 𝜃(1) is 1 − 𝑎(𝜃(1)). The total probability
of landing in set 𝐴 if we reject the draw is 1 if 𝜃(1) ∈ 𝐴, or 0 if it isn’t in 𝐴, which we can
represent as 1 (𝜃(1) ∈ 𝐴).

This means that

𝑃(𝐴 ∣ 𝜃(1)) = (1 − 𝑎(𝜃(1)))1 (𝜃(1) ∈ 𝐴) + ∫
𝐴

ℎ(𝜃(1), 𝜃)𝐽(𝜃 ∣ 𝜃(1))𝑑𝜃

Now we need to show that this is a reversible transition, namely:

∫
𝐵

𝜋(𝜃(1))𝑃 (𝐴 ∣ 𝜃(1))𝑑𝜃(1) = ∫
𝐴

𝜋(𝜃(1))𝑃 (𝐵 ∣ 𝜃(1))𝑑𝜃(1)

crucially, for a density 𝜋(𝜃) ≡ 𝑝(𝜃 ∣ 𝑦) with an unnormalized joint density 𝑝(𝜃, 𝑦) with the
property:

3

𝑝(𝜃(1), 𝑦)ℎ(𝜃(1), 𝜃)𝐽(𝜃 ∣ 𝜃(1)) = 𝑝(𝜃, 𝑦)ℎ(𝜃, 𝜃(1))𝐽(𝜃(1) ∣ 𝜃)
This is true because, assuming 𝑝(𝜃(1), 𝑦) ≤ 𝑝(𝜃, 𝑦),

𝑝(𝜃(1), 𝑦)ℎ(𝜃(1), 𝜃)𝐽(𝜃 ∣ 𝜃(1)) = 𝑝(𝜃, 𝑦)𝑝(𝜃(1), 𝑦)
𝑝(𝜃, 𝑦) 𝐽(𝜃(1) ∣ 𝜃)

= 𝑝(𝜃(1), 𝑦)𝐽(𝜃 ∣ 𝜃(1))
ℎ(𝜃(1), 𝜃) = min(𝑝(𝜃, 𝑦)/𝑝(𝜃(1), 𝑦), 1) = 1. We’ll start with the LHS above and we can show
that it equals the RHS. First we start with the first term on the LHS:

∫
𝐵

𝑝(𝜃(1) ∣ 𝑦)(1 − 𝑎(𝜃(1)))1 (𝜃(1) ∈ 𝐴) 𝑑𝜃(1) = ∫
Ω𝜃

1 (𝜃(1) ∈ 𝐵) 𝑝(𝜃(1) ∣ 𝑦)(1 − 𝑎(𝜃(1)))1 (𝜃(1) ∈ 𝐴) 𝑑𝜃(1)

= ∫
Ω𝜃

1 (𝜃(1) ∈ 𝐴) 𝑝(𝜃(1) ∣ 𝑦)(1 − 𝑎(𝜃(1)))1 (𝜃(1) ∈ 𝐵) 𝑑𝜃(1)

= ∫
𝐴

𝑝(𝜃(1) ∣ 𝑦)(1 − 𝑎(𝜃(1)))1 (𝜃(1) ∈ 𝐵) 𝑑𝜃(1).

∫
𝐵

𝑝(𝜃(1) ∣ 𝑦) ∫
𝐴

ℎ(𝜃, 𝜃(1))𝐽(𝜃 ∣ 𝜃(1))𝑑𝜃𝑑𝜃(1) = ∫
Ω𝜃

1 (𝜃(1) ∈ 𝐵) 𝑝(𝜃(1) ∣ 𝑦) ∫
Ω𝜃

1 (𝜃 ∈ 𝐴) ℎ(𝜃, 𝜃(1))𝐽(𝜃 ∣ 𝜃(1))𝑑𝜃𝑑𝜃(1)

= ∫
Ω𝜃

∫
Ω𝜃

1 (𝜃 ∈ 𝐴)1 (𝜃(1) ∈ 𝐵) 𝑝(𝜃(1) ∣ 𝑦)ℎ(𝜃(1), 𝜃)𝐽(𝜃 ∣ 𝜃(1))𝑑𝜃𝑑𝜃(1)

= 1
𝑝(𝑦) ∫

Ω𝜃

∫
Ω𝜃

1 (𝜃 ∈ 𝐴)1 (𝜃(1) ∈ 𝐵) 𝑝(𝜃(1), 𝑦)ℎ(𝜃(1), 𝜃)𝐽(𝜃 ∣ 𝜃(1))𝑑𝜃𝑑𝜃(1)

= 1
𝑝(𝑦) ∫

Ω𝜃

∫
Ω𝜃

1 (𝜃 ∈ 𝐴)1 (𝜃(1) ∈ 𝐵) 𝑝(𝜃, 𝑦)ℎ(𝜃, 𝜃(1))𝐽(𝜃(1) ∣ 𝜃)𝑑𝜃(1)𝑑𝜃

= 1
𝑝(𝑦) ∫

Ω𝜃

1 (𝜃 ∈ 𝐴) 𝑝(𝜃, 𝑦) ∫
Ω𝜃

1 (𝜃(1) ∈ 𝐵) ℎ(𝜃, 𝜃(1))𝐽(𝜃(1) ∣ 𝜃)𝑑𝜃(1)𝑑𝜃

= ∫
𝐴

𝑝(𝜃 ∣ 𝑦) ∫
𝐵

ℎ(𝜃, 𝜃(1))𝐽(𝜃(1) ∣ 𝜃)𝑑𝜃(1)𝑑𝜃

Putting these together, we’ve shown that:

∫
𝐵

𝑝(𝜃(1) ∣ 𝑦)𝑃 (𝐴 ∣ 𝜃(1))𝑑𝜃(1) = ∫
𝐴

𝜋(𝜃(1) ∣ 𝑦)𝑃 (𝐵 ∣ 𝜃(1))𝑑𝜃(1)

A default Metropolis sampler can be generated using a multivariate normal distribution for
𝐽𝑡(𝜃𝑏 ∣ 𝜃𝑎)

𝜃𝑏 ∼ 𝑁(𝜃𝑎, Σ)

where we tune Σ to be about the scale we expect the posterior to be. That means that when
we’re in regions of high density, we’ll have a good chance of jumping to a point that has
reasonable posterior density, which means we won’t reject the proposal with high probabil-
ity.

4

Hamiltonian Monte Carlo

One way to generate a proposal distribution with this property is with an idea from physics
using parameter expansion, namely if we have a distribution we’d like to sample from, 𝜋(𝜃),
we can introduce 1-to-1 auxiliary variables 𝜑 (i.e. if we have 𝑑 𝜃, we’ll have 𝑑 𝜑) with a
multivariate normal distribution so our joint target density is 𝜋(𝜃)N (𝜑 ∣ 0, 𝑀).
If we represent the marginal target density as exp(−(− log 𝜋(𝜃)− logN (𝜑 ∣ 0, 𝑀))), and call
𝑈(𝜃) − log 𝜋(𝜃), 𝐾(𝜑) = − logN (𝜑 ∣ 0, 𝑀))), we get the following representation:

exp(−(𝑈(𝜃) + 𝐾(𝜑))) ≡ 𝜋(𝜃)N (𝜑 ∣ 0, 𝑀)

We can think of 𝜃 as representing the positions of 𝑑 particles and 𝜑 as representing the
momentum. In this sense, 𝑈(𝜃) is a potential energy, and 𝐾(𝜑) is a kinetic energy term.
The total energy in the system is 𝑈(𝜃)+𝐾(𝜑) and this is called the Hamiltonian, or 𝐻(𝜃, 𝜑).
It turns out that given an initial starting point (𝜃0, 𝜑0) we can simulate the trajectories
of these particles for any time 𝑡 in the future using the Hamiltonian and what are called
Hamilton’s system of equations:

𝑑𝜃
𝑑𝑡 = 𝜕𝐻(𝜃, 𝜑)

𝜕𝜑
𝑑𝜑
𝑑𝑡 = −𝜕𝐻(𝜃, 𝜑)

𝜕𝜃
We can write this in matrix notation if we define the matrix 𝐽−1 as:

[0 𝐼𝑑
−𝐼𝑑 0]

∇𝑡 [𝜃
𝜑] = 𝐽∇𝜃,𝜑𝐻(𝜃, 𝜑)

Then for a small time step Δ𝑡 we get

𝜃Δ𝑡 = 𝜃0 + 𝑑𝜃
𝑑𝑡 (𝜃, 𝜑)Δ𝑡

𝜑Δ𝑡 = 𝜑0 + 𝑑𝜑
𝑑𝑡 (𝜃, 𝜑)Δ𝑑𝑡

This seems straightforward, but
[0 −𝐼𝑑
𝐼𝑑 0]

[𝜃Δ𝑡
𝜑Δ𝑡

] = [𝜃
𝜑] + [0 𝐼𝑑

−𝐼𝑑 0] [∇𝜃𝐻(𝜃, 𝜑)
∇𝜑𝐻(𝜃, 𝜑)] Δ𝑡

What’s the Jacobian of this transformation?

5

∇𝜃,𝜑 [𝜃Δ𝑡
𝜑Δ𝑡

] = [𝐼𝑑 0
0 𝐼𝑑

] + [0 𝐼𝑑
−𝐼𝑑 0] [∇2

𝜃𝐻(𝜃, 𝜑) ∇2
𝜃,𝜑𝐻(𝜃, 𝜑)

∇2
𝜑,𝜃𝐻(𝜃, 𝜑) ∇2

𝜑𝐻(𝜃, 𝜑)] Δ𝑡

This simplifies to

∇𝜃,𝜑 [𝜃Δ𝑡
𝜑Δ𝑡

] = [𝐼𝑑 + Δ𝑡∇2
𝜃,𝜑𝐻(𝜃, 𝜑) Δ𝑡∇2

𝜃𝐻(𝜃, 𝜑)
−Δ𝑡∇2

𝜑𝐻(𝜃, 𝜑) 𝐼𝑑 − Δ𝑡∇2
𝜃,𝜑𝐻(𝜃, 𝜑)]

It turns out that the determinant of this matrix is 𝐼𝑑 plus terms that involve (Δ𝑡)2. If we
make Δ𝑡 small, this means that the determinant of the transformation is 1.

Another nice property of these equations is that the Hamiltonian is constant in time:
𝑑𝐻(𝜃, 𝜙)

𝑑𝑡 = ∑
𝑗

𝑑𝜃
𝑑𝑡

𝜕𝐻
𝜕𝜃 + 𝑑𝜑

𝑑𝑡
𝜕𝐻
𝜕𝜑

= ∑
𝑗

𝜕𝐻
𝜕𝜑

𝜕𝐻
𝜕𝜃 − 𝜕𝐻

𝜕𝜃
𝜕𝐻
𝜕𝜑

= 0
This means that if we sample (𝜃0, 𝜑0) from the density exp(−𝐻(𝜃, 𝜑)) and compute the
final position and momentum of the particles after 𝑡 time (𝜃𝑡, 𝜑𝑡), we’ll get the same density
over 𝜃0, 𝜑0 that we started with: Let 𝐹𝑡(𝜃0, 𝜑0) = (𝜃𝑡, 𝜑𝑡). This has an inverse, such that
𝐹 −1

𝑡 (𝜃𝑡, 𝜑𝑡) = (𝜃0, 𝜑0). In fact, this inverse is equal to 𝐹 −1
𝑡 (𝜃𝑡, 𝜑𝑡) = 𝐹−𝑡(𝜃𝑡, 𝜑𝑡) Let’s

compute the density under this transformation, starting with the density:

exp(−𝐻(𝜃0, 𝜑0))𝑑𝜃0𝑑𝜑0

exp(−𝐻(𝐹 −1
𝑡 (𝜃𝑡𝜑𝑡))) det ∇𝜃𝑡,𝜑𝑡

𝐹 −1
𝑡 (𝜃𝑡𝜑𝑡) = exp(−𝐻(𝐹−𝑡(𝜃𝑡𝜑𝑡))) det ∇𝜃𝑡,𝜑𝑡

𝐹 −1
𝑡 (𝜃𝑡𝜑𝑡)

= exp(−𝐻(𝜃𝑡𝜑𝑡))𝑑𝜃𝑡𝑑𝜑𝑡

where the second line follows from the fact that the change in time for the Hamiltonian is
zero, and that the determinant of the transformation is 1. Thus, plugging in 𝜃𝑡, 𝜑𝑡 to the
Hamiltonian has no effect on the value of the function; the Hamiltonian is constant.

This means that the starting values define the total energy for the system.

The algorithm for ex

One key point from above is that we can take gradients without worrying about the normal-
izing constant!

𝜕𝐻(𝜃, 𝜑)
𝜕𝜃 = − 𝑑

𝑑𝜃 log(𝑝(𝜃 ∣ 𝑦))

= − 𝑑
𝑑𝜃 (log 𝑝(𝜃) + log(𝑓𝑌 (𝑦 ∣ 𝜃)) − log(𝑓𝑌 (𝑦)))

= − 𝑑
𝑑𝜃 (log 𝑝(𝜃) + log(𝑓𝑌 (𝑦 ∣ 𝜃)))

6

because the marginal density of the data is not dependent on 𝜃. Thus we can use this
algorithm to sample from densities with intractable normalizing constants, which is pretty
much any interesting statitsical model.

The idea is to draw an initial value for 𝜑 from a multivariate normal distribution, and then
to run Hamilton’s equations to get draws for the final 𝜃𝑡 and 𝜑𝑡

The problem with this idea is that we can’t solve Hamilton’s equations for any non-trivial
problem. What we do instead is to discretize the equations and solve them approximately.
If our Hamiltonian allows for 𝑝(𝜑 ∣ 𝜃), we’ll need to use complex numerical integration
schemes. If, as is typical, we use a distribution for 𝜑 that is independent of 𝜃 (something like
a multivariate normal distribution with a fixed covariance matrix, 𝑀 , for the density 𝑝(𝜑)),
we can use the leapfrog integrator to approximately solve the equations of motion.

Let’s define 𝐿 as the number of steps of the integrator, and 𝜖 as the step-size, or how finely
discretized our equations of motion are. Start with 𝜃(0), and 𝜑(0) ∼ Normal(0, 𝑀) and Then
for each step 𝑙 = 1, … , 𝐿, repeat:

𝜑(𝜖(𝑙−1/2)) = 𝜑(𝜖(𝑙−1)) + 𝜖
2

𝑑 log(𝑝(𝜃 ∣ 𝑦))
𝑑𝜃

𝜃(𝜖𝑙) = 𝜃(𝜖(𝑙−1)) + 𝜖𝑀−1𝜑(𝜖(𝑙−1))

𝜑(𝜖𝑙) = 𝜑(𝜖(𝑙−1/2)) + 𝜖
2

𝑑 log(𝑝(𝜃 ∣ 𝑦))
𝑑𝜃

Here is the expression for the final proposal for 𝜃(𝐿𝜖):

𝜃(𝐿𝜖) = 𝜃(0) + 𝐿𝜖2

2 ∇𝜃𝑈(𝜃(0)) − 𝜖2
𝐿

∑
𝑙=1

(𝐿 − 𝑙)∇𝜃𝑈(𝜃(𝜖𝑙)) + 𝐿𝜖𝜑(0)

where 𝜑(0) ∼ Normal(0, 𝑀).
One problem with this implementation is that the Hamiltonian isn’t exactly conserved, so
we do have to do a Metropolis step at the end of the 𝐿 steps to determine if we accept the
proposal.

Finally, after we run the algorithm, we have a new set of parameters 𝜃(𝐿𝜖), 𝜑(𝐿𝜖). We then
compute the ratio of the exponentiated Hamiltonian at the start and end of the algorithm:

𝑟 = 𝑝(𝜃(0) ∣ 𝑦)𝑝(𝜑(0))
𝑝(𝜃(𝐿𝜖) ∣ 𝑦)𝑝(𝜑(𝐿𝜖))

and set 𝜃(1) = 𝜃(𝐿𝜖) with probability min(𝑟, 1), or 𝜃(1) = 𝜃(0) otherwise.

This algorithm has three tuning parameters, 𝐿, 𝜖, 𝑀 . One way to set 𝐿 is to run the algorithm
until you detect that the particles have begun to move back towards the starting point, 𝜃(0).
That way, you’ll minimize the autocorrelation between draws, and boost your effective sample
size.

7

That suggests a heuristic to measure the dot-product of (𝜃(𝑙𝜖) − 𝜃(0)) and 𝜑. When this
becomes negative, it means that the momentum is pointing in a different direction than the
difference between the current step and the initial point.

This is the idea behind the No-U-Turn-Sampler, which stops the leapfrog integrator when

∑
𝑗

(𝜃(𝑙𝜖)
𝑗 − 𝜃(0)

𝑗)𝜑(𝑙𝜖)
𝑗 < 0

We can’t exactly use this as an exact stopping rule because just choosing 𝜃(𝑙𝜖) as the final
draw in the trajectory would not lead to a sampler with detailed balance.

See Hoffman, Gelman, et al. (2014) for more information.

Another parameter that needs to be set is 𝜖, which is the discretization size of the numerical
integrator.

If this is set to be too small, you’ll need many leapfrog steps to make measurable progress.
If it is set too large, the numerical error in the integrator will add up too quickly and you
won’t be approximating the solution to the diff-eqs well anymore. This can lead to something
called divergences, where the integrator diverges.
Geyer, Charles J. 2005. “Markov Chain Monte Carlo Lecture Notes.”
Hoffman, Matthew D, Andrew Gelman, et al. 2014. “The No-u-Turn Sampler: Adaptively

Setting Path Lengths in Hamiltonian Monte Carlo.” J. Mach. Learn. Res. 15 (1):
1593–623.

Tanner, Martin A, and Wing Hung Wong. 1987. “The Calculation of Posterior Distributions
by Data Augmentation.” Journal of the American Statistical Association 82 (398): 528–
40.

8

	MCMC and Gibbs sampling recap
	Metropolis sampler
	Hamiltonian Monte Carlo

