
Missing data lecture 8: Likelihood-based
inference with incomplete data

Likelihood inference with incomplete data

We said that the likelihood function is really a set of functions that are proportional the prob-
ability density such that the constant of proportionality doesn’t depend the parameters.

Missing data methods distinguish themselves from other methods by modeling the joint dis-
tribution of 𝑌 and 𝑀 . Let 𝑦 and 𝑚 represent the outcome measurements and 𝑚 representing
the missingness indictors for all 𝑖 units:

𝑓𝑌 ,𝑀(𝑦, 𝑚 ∣ 𝜃, 𝜙) = 𝑓𝑌 (𝑦 ∣ 𝜃)𝑓𝑀∣𝑌 (𝑚 ∣ 𝑦, 𝜙)
When we have missing data, we can partition the matrix 𝑦 into 𝑦(1) and 𝑦(0), representing
the components of 𝑦 that are missing and observed, respectively.

Let Y be the sample space for 𝑦𝑖 and let Y(1) and Y(0) be the sample space for the missing
and observed components of 𝑦.

Then the distribution of the observed data is:

∫
Y(1)

𝑓𝑌 ,𝑀(𝑦, 𝑚 ∣ 𝜃, 𝜙)𝑑𝑦(1) = ∫
Y(1)

𝑓𝑌 (𝑦(0), 𝑦(1) ∣ 𝜃)𝑓𝑀∣𝑌 (𝑚 ∣ 𝑦(0), 𝑦(1), 𝜙)𝑑𝑦(1)

This joint density is proportional to what we’ll call the full-data likelihood:

𝐿full(𝜃, 𝜙 ∣ 𝑦(0), 𝑚) = ∫
Y(1)

𝑓𝑌 (𝑦(0), 𝑦(1) ∣ 𝜃)𝑓𝑀∣𝑌 (𝑚 ∣ 𝑦(0), 𝑦(1), 𝜙)𝑑𝑦(1)

We can also compute the likelihood ignoring the missingness process:

𝐿ign(𝜃 ∣ 𝑦(0)) = ∫
Y(1)

𝑓𝑌 (𝑦(0), 𝑦(1) ∣ 𝜃)𝑑𝑦(1)

We’ll say that the missingness mechanism is ignorable if inferences based on 𝐿ign(𝜃 ∣ 𝑦(0))
and 𝐿full(𝜃, 𝜙 ∣ 𝑦(0), 𝑚) are the same given 𝑚, 𝑦(0).
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Formally, the missingness mechanism is ignorable for direct likelihood inference if the likei-
hood ratios for any two 𝜃, 𝜃∗ given 𝑚, 𝑦(0) are equal:

𝐿full(𝜃, 𝜙 ∣ 𝑦(0), 𝑚)
𝐿full(𝜃∗, 𝜙 ∣ 𝑦(0), 𝑚𝑖)

=
𝐿ign(𝜃 ∣ 𝑦(0))
𝐿ign(𝜃∗ ∣ 𝑦(0))

∀𝜃, 𝜃∗, 𝜙

There are two sufficient conditions ensure ignorability:

1. Parameters 𝜃 and 𝜙 are variationally independent, i.e. the joint parameter space Ω𝜃,𝜙 =
Ω𝜃 × Ω𝜙

2. The full likelihood factorizes as

𝐿full(𝜃, 𝜙 ∣ 𝑦(0), 𝑚) = 𝐿ign(𝜃 ∣ 𝑦(0))𝐿rest(𝜙 ∣ 𝑦(0), 𝑚)

The first condition is sufficient to ensure that the value of 𝜙 doesn’t lead to a different
likelihood value for 𝜃 vs. 𝜃∗.

If the data are MAR, then we will satisfy the second condition:

𝑓𝑀∣𝑌 (𝑚 ∣ 𝑦(0), 𝑦(1), 𝜙) = 𝑓𝑀∣𝑌 (𝑚 ∣ 𝑦(0), 𝑦∗
(1), 𝜙)

for all 𝑦(1), 𝑦∗
(1), 𝜙. Then we can write the full-likelihood as:

𝑓𝑀∣𝑌 (𝑚 ∣ 𝑦(0), 𝜙) ∫
Y(1)

𝑓𝑌 (𝑦(0), 𝑦(1) ∣ 𝜃)𝑑𝑦(1) = 𝑓𝑀∣𝑌 (𝑚 ∣ 𝑦(0), 𝜙)𝑓𝑌 (𝑦(0) ∣ 𝜃)

Then by the above theorem, parameter distinctness and MAR are sufficient for ignorability.

When we do Bayesian inference we need to ensure that the posterior for 𝜃 when using the
ignorable likelihood is equal to the posterior for 𝜃 when using the full likelihood. Under the
full likleihood, the posterior for (𝜃, 𝜙) is:

𝑝(𝜃, 𝜙 ∣ 𝑦(0), 𝑚) ∝ 𝑝(𝜃, 𝜙)𝐿full(𝜃, 𝜙 ∣ 𝑦(0), 𝑚)
and under the ignorable likelihood we have:

𝑝(𝜃 ∣ 𝑦(0), 𝑚) ∝ 𝑝(𝜃)𝐿ign(𝜃 ∣ 𝑦(0))
Thus, sufficient conditions for the posteriors to be equal is that 1. 𝑝(𝜃, 𝜙) = 𝑝(𝜃)𝑝(𝜙), or the
prior independence of 𝜃 and 𝜙 2. the likelihood factorizes

𝐿full(𝜃, 𝜙 ∣ 𝑦(0), 𝑚) = 𝐿ign(𝜃 ∣ 𝑦(0))𝐿rest(𝜙 ∣ 𝑦(0), 𝑚)
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Example: Incomplete exponential sample

Let 𝑦𝑖
iid∼ Exponential(𝜃) for 𝑖 = 1, … , 𝑛. Let 𝑚𝑖 be the missingness indicators, and suppose

𝑟 = ∑𝑛
𝑖=1 𝑚𝑖. The full likelihood is

𝑓𝑌 (𝑦 ∣ 𝜃) = 𝜃−𝑛 exp (−
𝑛

∑
𝑖=1

𝑦𝑖/𝜃)

Let 𝑦(0) = (𝑦1, … , 𝑦𝑟) and 𝑦(1) = (𝑦𝑟+1, … , 𝑦𝑛). The likelihood that ignores the likelihood
is

𝐿ign(𝜃 ∣ 𝑦(0)) = 𝜃−𝑟 exp (−
𝑟

∑
𝑖=1

𝑦𝑖/𝜃)

Let 𝑚𝑖
iid∼ Bernoulli(𝜙), so

𝑓𝑀∣𝑌 (𝑚 ∣ 𝑦, 𝜙) = 𝜙𝑟(1 − 𝜙)𝑛−𝑟

Then 𝑓(𝑦(0), 𝑚 ∣ 𝜃, 𝜙) = 𝜙𝑟(1 − 𝜙)𝑛−𝑟𝜃−𝑟 exp (− ∑𝑟
𝑖=1 𝑦𝑖/𝜃), which factorizes into a factor

related to 𝜃 and a factor related to 𝜙. This means we can base inferences on 𝜃 on 𝐿ign(𝜃 ∣ 𝑦(0)
instead of the full likelihood. The MLE is ̂𝜃 = ∑𝑛

𝑖=1 𝑦𝑖/𝑟.

Now suppose we observe only observations for which 𝑦𝑖 ≤ 𝑐, so

𝑓(𝑚𝑖 ∣ 𝑦𝑖, 𝜙) = 1 (𝑦𝑖 ≥ 𝑐)𝑚𝑖
1 (𝑦𝑖 < 𝑐)1−𝑚𝑖

Putting this together, the full likelihood is:
𝑟

∏
𝑖=1

𝑓𝑌 (𝑦𝑖 ∣ 𝜃)1 (𝑦𝑖 < 𝑐)
𝑛

∏
𝑖=𝑟+1

∫
R+
1 (𝑦𝑖 ≥ 𝑐) 𝑓(𝑦 ∣ 𝜃)𝑑𝑦

Which of course simplifies to

𝜃−𝑟 exp (−
𝑟

∑
𝑖=1

𝑦𝑖/𝜃) exp(−(𝑛 − 𝑟)𝑐/𝜃)

This shows that the missingness is nonignorable, because the full likelihood isn’t equal to
the ignorable likelihood we used in the first part of the problem.

The log-likelihood is:

ℓ(𝜃 ∣ 𝑦(0), 𝑚) = −𝑟 log 𝜃 −
𝑟

∑
𝑖=1

𝑦𝑖/𝜃 − (𝑛 − 𝑟)𝑐/𝜃

𝜕ℓ(𝜃 ∣ 𝑦(0), 𝑚)
𝜕𝜃 = −𝑟/𝜃 +

𝑟
∑
𝑖=1

𝑦𝑖/𝜃2 + (𝑛 − 𝑟)𝑐/𝜃2

Setting this equal to zero and solving for 𝜃 gives the MLE:

̂𝜃 = ∑𝑟
𝑖=1 𝑦𝑖 + (𝑛 − 𝑟)𝑐

𝑟
This of course doesn’t equal the ignorable MLE, ̄𝑦 for the observed values.
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Missing data example: Parameter distinctness

Let the model be defined as
𝑦𝑖𝑗 ∣ 𝜇𝑖, 𝜃 ∼ Normal(𝛼𝑖, 𝜎2)

𝛼𝑖 ∣ 𝜃 ∼ Normal(𝜇, 𝜏2)
Let the missingness mechanism be:

𝑓𝑀∣𝑌 (𝑚𝑖𝑗 ∣ 𝑦, 𝛼𝑖, 𝜙) = 𝜋(𝛼𝑖, 𝜙) = (1 + 𝑒−(𝜙0+𝜙1𝛼𝑖))−1

The joint density of the observations and parameters, also known as the complete data
likelihood, is:

𝐼
∏
𝑖=1

𝑛𝑖

∏
𝑗=1

1√
2𝜋𝜎2 𝑒− 1

2𝜎2 (𝑦𝑖𝑗−𝛼𝑖)2𝜋(𝛼𝑖, 𝜙)𝑚𝑖𝑗(1 − 𝜋(𝛼𝑖, 𝜙))1−𝑚𝑖𝑗
1√

2𝜋𝜎2 𝑒− 1
2𝜎2 (𝛼𝑖−𝜇)2

Because the 𝛼𝑖 aren’t observed, but do have a density, we need to integrate over them to
compute the full likelihood:

𝐼
∏
𝑖=1

∫
R

𝑛𝑖

∏
𝑗=1

( 1√
2𝜋𝜎2 𝑒− 1

2𝜎2 (𝑦𝑖𝑗−𝛼𝑖)2)
1−𝑚𝑖𝑗

𝜋(𝛼𝑖, 𝜙)𝑚𝑖𝑗(1 − 𝜋(𝛼𝑖, 𝜙))1−𝑚𝑖𝑗
1√

2𝜋𝜎2 𝑒− 1
2𝜎2 (𝛼𝑖−𝜇)2𝑑𝛼𝑖

This shows that the missingness process isn’t ignorable here, even though we don’t technically
have the distribution of missingness depending on missing obesrvable data, per se. This
shows that in some sense, 𝛼𝑖 is missing data, and, indeed, this is what our textbook considers
missing data; namely anything that has a distribution that is unobserved. This makes the
problem MNAR.

Compare this to the ANOVA model with the same missingness mechanism:

𝑦𝑖𝑗 ∣ 𝛼𝑖, 𝜃 ∼ Normal(𝛼𝑖, 𝜎2)

Then the joint likelihood is
𝐼

∏
𝑖=1

𝑛𝑖

∏
𝑗=1

1√
2𝜋𝜎2 𝑒− 1

2𝜎2 (𝑦𝑖𝑗−𝛼𝑖)2𝜋(𝛼𝑖, 𝜙)𝑚𝑖𝑗(1 − 𝜋(𝛼𝑖, 𝜙))1−𝑚𝑖𝑗

This shows that the data are MAR, because the missingness mechanism doesn’t depend on
missing data. However, the parameters for the missingness mechanism and the observations
don’t satisfy the distinctness condition, so the missingness is nonignorable.

Partial MAR

Suppose we can partition 𝜃 into two pieces, 𝜃1 and 𝜃2 so that the parameter of interest is 𝜃1.
The data are partially MAR for 𝜃1 if we can factorize the full likelihood:

𝐿full(𝜃1, 𝜃2, 𝜙 ∣ 𝑦(0), 𝑚) = 𝐿1(𝜃 ∣ 𝑦(0))𝐿rest(𝜃2, 𝜙 ∣ 𝑦(0), 𝑚)
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Example: Regression with missing data

An example of this is when we have covariates paired with each observation so that the
complete data is (𝑦𝑖, 𝑥𝑖), 𝑖 = 1, … , 𝑛 where 𝑦𝑖 ∈ R𝑑 and 𝑥𝑖 ∈ R𝑝. let 𝑦(0), 𝑦(1) be the observed
and missing elements of 𝑦𝑖 and 𝑥(0), 𝑥(1) are the observed and missing elements of 𝑥𝑖. Let 𝑚𝑍

𝑖
be the missingness indicators for the covariates, 𝑍, and let 𝑚𝑌

𝑖 be the missingness indicators
for the observations 𝑦𝑖. Let 𝑚𝑖 = (𝑚𝑌

𝑖 , 𝑚𝑍
𝑖 ) be the combined missingness indicators for unit

𝑖. Suppose that for 𝑖 = 1, … , 𝑟 𝑥𝑖 is fully observed, while at least one component of 𝑦𝑖 is
observed, and for the remaining 𝑖 = 𝑟 + 1, … , 𝑛 𝑦𝑖 is completely missing and each 𝑧𝑖 has at
least one missing component. Let 𝑦𝑖, 𝑥𝑖, 𝑧𝑖 be unit iid, so:

𝑓𝑌 ,𝑋,𝑀(𝑦𝑖, 𝑥𝑖, 𝑚𝑖 ∣ 𝜃1, 𝜃2, 𝜙) = 𝑓𝑌 ∣𝑋(𝑦𝑖 ∣ 𝑥𝑖, 𝜃1)𝑓𝑋(𝑥𝑖 ∣ 𝜃2)𝑓𝑀∣𝑌 ,𝑋(𝑚𝑖 ∣ 𝑦𝑖, 𝑥𝑖, 𝜙)

We’ll assume the missingness mechanism takes the following form:

𝑓𝑀∣𝑌 ,𝑋(𝑚𝑖 ∣ 𝑥𝑖(1), 𝑥𝑖(0), 𝑦𝑖, 𝜙) = 𝑓𝑀∣𝑌 ,𝑋(𝑚𝑖 ∣ 𝑥𝑖(1), 𝑥𝑖(0), 𝑦⋆
𝑖 , 𝜙)

for all 𝑦𝑖, 𝑦⋆
𝑖 , 𝑥𝑖(0), 𝑖 = 1, … , 𝑛.

This missingness mechanism is MNAR because it depends on unobserved components of
𝑥𝑖(1). Luckily we’ll be able to factorize our likelihood so inference 𝜃1 is partially ignorable:

𝐿full(𝜃1, 𝜃2, 𝜙 ∣ 𝑦(0), 𝑥(0), 𝑚) = 𝐿p-ign(𝜃1 ∣ 𝑦(0), 𝑥(0))𝐿rest(𝜃2, 𝜙 ∣ 𝑚, 𝑥(0))

Let Y𝑖 be the sample space corresponding to the missing 𝑦𝑖(1). Then we can write the
ignorable part of the likelihood:

𝐿p-ign(𝜃1 ∣ 𝑦(0), 𝑥(0)) =
𝑟

∏
𝑖=1

∫
Y𝑖

𝑓𝑌 ∣𝑋(𝑦𝑖(0), 𝑦𝑖(1) ∣ 𝑥𝑖, 𝜃1)𝑑𝑦𝑖(1)

Let X𝑖 be the sample space of the missing covariates for the 𝑖th unit. Then the rest of the
likelihood can be written as

𝐿rest(𝜃2, 𝜙 ∣ 𝑥𝑖(0), 𝑚) =
𝑟

∏
𝑖=1

𝑓𝑋(𝑧𝑖 ∣ 𝜃2)𝑓𝑀∣𝑋(𝑚𝑖 ∣ 𝑥𝑖, 𝜙)
𝑛

∏
𝑖=𝑟+1

∫
X𝑖

𝑓𝑋(𝑥𝑖(0), 𝑥𝑖(1) ∣ 𝜃2)𝑓𝑀∣𝑋(𝑚𝑖 ∣ 𝑥𝑖(1), 𝑥𝑖(0), 𝜙)𝑑𝑥𝑖(1)

Note the book has a typo here.
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