
Missing data lecture 9: MAR vs. MAAR
(again) and Data Coarsening

Clarifying MAR vs. unit MAR

Let there be 𝑛 units, of which we’re interested in measuring 𝐾 variables. Let the 𝑛 × 𝐾
matrix of observations be denoted 𝑌 , with elements 𝑦𝑖𝑗 while a realization of this matrix
is called ̃𝑦, with elements ̃𝑦𝑖𝑗. Let the matrix of missingness indicators be denoted 𝑀 ,
elements 𝑚𝑖𝑗, with a particular realization �̃�, with elements �̃�𝑖𝑗. Let 𝑌(0) = {𝑦𝑖𝑗 ∣ 𝑚𝑖𝑗 =
0, 𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝐾}. Let 𝑌(1) = {𝑦𝑖𝑗 ∣ 𝑚𝑖𝑗 = 1, 𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝐾}. Let Y(1)
be the sample space of the missing values. Let a realization of these sets of variables be ̃𝑦(0)
and ̃𝑦(1).

The joint likelihood of the observed data and the missingness indicators is:

𝐿full(𝜃, 𝜙 ∣ ̃𝑦(0), �̃�) = ∫
Y(1)

𝑓𝑌 ( ̃𝑦(0), 𝑦(1) ∣ 𝜃)𝑃 (𝑀 = �̃� ∣ 𝑌(0) = ̃𝑦(0), 𝑌(1) = 𝑦(1), 𝜙)𝑑𝑦(1)

The definition of MAR from the book is as follows:

𝑓𝑀∣𝑌 (�̃� ∣ 𝑌(0) = ̃𝑦(0), 𝑌(1) = 𝑦(1), 𝜙) = 𝑓𝑀∣𝑌 (�̃� ∣ 𝑌(0) = ̃𝑦(0), 𝑌(1) = 𝑦∗
(1), 𝜙)

for all 𝑦(1), 𝑦∗
(1), 𝜙.

The definition of MAAR is:

𝑓𝑀∣𝑌 (𝑚 ∣ 𝑌(0) = 𝑦(0), 𝑌(1) = 𝑦(1), 𝜙) = 𝑓𝑀∣𝑌 (𝑚 ∣ 𝑌(0) = 𝑦(0), 𝑌(1) = 𝑦∗
(1), 𝜙)

for all 𝑚, 𝑦(0), 𝑦(1), 𝑦∗
(1), 𝜙.
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Unit missingness

When we have an assumption that observations and missingness for units can be considered
conditionally independent given parameters 𝜃 and 𝜙, we get unit MAR instead of MAR.

Let 𝑌𝑖 be the 𝑖th row of the matrix 𝑌 , or the length 𝐾 random vector representing observa-
tions for unit 𝑖, while ̃𝑦𝑖 is a particular realization of this random vector and 𝑦𝑖 is a dummy
vector. Similarly let 𝑀𝑖 be the 𝑖th row of the matrix 𝑀 , with particular realization �̃�𝑖 and
𝑚𝑖 a dummy vector. Furthermore, let 𝑌𝑖(0), 𝑌𝑖(1) be the observed and missing random vectors
of 𝑦𝑖, while ̃𝑦𝑖(0), ̃𝑦𝑖(1) are realizations of these vectors.

Then the joint distribution of observations and missingness is

𝑓𝑌 ,𝑀(𝑦, 𝑚 ∣ 𝜃, 𝜙) =
𝑛

∏
𝑖=1

𝑓𝑌𝑖
(𝑦𝑖 ∣ 𝜃)𝑓𝑀𝑖∣𝑌𝑖

(𝑚𝑖 ∣ 𝑦𝑖, 𝜃)

For unit MAR, the condition becomes:

𝑓𝑀𝑖∣𝑌𝑖
(�̃�𝑖 ∣ 𝑌𝑖(0) = ̃𝑦𝑖(0), 𝑌𝑖(1) = 𝑦𝑖(1), 𝜙) = 𝑓𝑀𝑖∣𝑌𝑖

(�̃�𝑖 ∣ 𝑌𝑖(0) = ̃𝑦𝑖(0), 𝑌𝑖(1) = 𝑦⋆
𝑖(1), 𝜙)

for all 𝑦𝑖(1), 𝑦⋆
𝑖(1), 𝜙 for all 𝑖.

Clarifying MAR vs. MAAR

The example given by Little (2021) is the following:

Suppose we have observations (𝑦𝑖, 𝑥𝑖), where 𝑦𝑖 is potentially missing and 𝑥𝑖 is either 1 or 2,
denoting group membership. Let 𝜃 = (𝜇1, 𝜇2, 𝜎2), and the model for the observations be

𝑦𝑖 ∣ 𝑥𝑖, 𝜃 ∼ Normal(𝜇𝑥𝑖
, 𝜎2)

The standard confidence interval for the difference in means is:

̄𝑦2 − ̄𝑦1 ± 𝑡𝜈,0.975(𝑠√1/𝑛1 + 1/𝑛2)
This also corresponds to the Bayesian credible interval when using a flat prior on 𝜇1, 𝜇2 and
log 𝜎2. Suppose the missingness mechanism is as follows:

𝑃 (𝑚𝑖 = 1 ∣ 𝑥𝑖, 𝑦𝑖, 𝜙) =
⎧{
⎨{⎩

0 𝑥𝑖 = 1
0 𝑥𝑖 = 2 and 𝑦𝑖 ≤ 𝜙
1 𝑥𝑖 = 2 and 𝑦𝑖 > 𝜙

That is, for group 2, if the observation is above an unknown cutoff value, the value is not
recorded.

Suppose that we have a dataset where there are no missing values. Then the data is MAR but
not MAAR, because in repeated hypothetical samples there would be missing values that are
MNAR. The Bayesian credible interval is still valid under MAR because we’re conditioning
on the dataset we have, whereas the Frequentist interval isn’t valid because it couldn’t be
repeated for datasets where 𝑦𝑖 is missing for some group 2 observations.
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Coarsened data

Coarsened data is a generalization of missing data that includes other ways in which the
resolution of data can be reduced. Examples include censoring, grouping, rounding, or
heaping. Heaping is the phenomenon where there are varying levels of resolution reported in
the same dataset. For example, on a questionnaire that asks for the the number of cigarettes
smoked per day, some people will report exact numbers, and others will report multiples of
packs. With rounded data, the coarsening is more deterministic, namely we know that an
observation is exactly within the interval, say between [floor(𝑦), floor(𝑦)+1] With coarsened
data, there is still the complete data matrix 𝑦 = (𝑦𝑖𝑗), but there is now a coarsening variable
𝑐𝑖𝑗 that interacts with the true value to return the observed data.

Let 𝑤𝑖𝑗 be the observed data, and let 𝑊(𝑦𝑖𝑗, 𝑐𝑖𝑗) be the function of the true value and
the coarsening variable that returns some subset of Y𝑖𝑗 to which 𝑦𝑖𝑗 belongs. Thus 𝑤𝑖𝑗 =
𝑊(𝑦𝑖𝑗, 𝑐𝑖𝑗) with the requirement that 𝑦𝑖𝑗 ∈ 𝑊(𝑦𝑖𝑗, 𝑐𝑖𝑗). Let 𝑔𝑖𝑗 be the observed coarsening
random variable that is governed by a function 𝐺(𝑦𝑖𝑗, 𝑐𝑖𝑗) such that 𝑐𝑖𝑗 ∈ 𝐺(𝑦𝑖𝑗, 𝑐𝑖𝑗). Just
as 𝑤 is a coarsened version of 𝑦, 𝑔 is a coarsened version of 𝑐.

The simplest nontrivial example is the censored exponential data from above, though we will
modify the scenario so that each individual has a potentially different censoring time 𝑐𝑖. Let
𝑦𝑖 be the true time to failure, while 𝑐𝑖 is the censoring time.

𝑤𝑖 = 𝑊(𝑦𝑖, 𝑐𝑖) = {𝑦𝑖 𝑦𝑖 ≤ 𝑐𝑖
(𝑐𝑖, ∞) 𝑦𝑖 > 𝑐𝑖

𝑔𝑖 = 𝐺(𝑦𝑖, 𝑐𝑖) = {(𝑦𝑖, ∞) 𝑦𝑖 ≤ 𝑐𝑖
𝑐𝑖 𝑦𝑖 > 𝑐𝑖

Let the realization of 𝑔 and 𝑤 be ̃𝑔 and �̃�, with elements ̃𝑔𝑖 and �̃�𝑖. Furthermore, let the
distribution of interest for 𝑦𝑖 be 𝑓𝑌 (𝑦𝑖 ∣ 𝜃), while we let the coarsening distributuion be
𝑓𝐶∣𝑌 (𝑐𝑖 ∣ 𝑦𝑖, 𝜙). Then we can write:

𝐿full(𝜃, 𝜙 ∣ ̃𝑔, �̃�) = ∫ ∫ 𝑓𝐶∣𝑌 (𝑐 ∣ 𝑦, 𝜙)𝑓𝑌 (𝑦 ∣ 𝜃)1 (𝑦 ∈ �̃�)1 (𝑐 ∈ ̃𝑔) 𝑑𝑦 𝑑𝑐

Another way to write this is by simplifying after the integration:

Let the vector 𝑐(0) = {𝑐𝑖 ∣ 𝑔𝑖 = 𝑐𝑖, 𝑖 = 1, … , 𝑛} and let 𝑐(1) = {𝑐𝑖 ∣ 𝑔𝑖 ≠ 𝑐𝑖, 𝑖 = 1, … , 𝑛}
Let 𝑐 = (𝑐(0), 𝑐(1)) be the vector of coarsening values. Let 𝑦(0) be the set of values that we
observe exactly, and 𝑦(1) be the set of values that are censored. Let �̃�(1) be the set of subsets
corresponding to the coarsened 𝑦’s and the same for ̃𝑔(1).

Then the integral can be rewritten in terms of these variables:

𝐿full(𝜃, 𝜙 ∣ ̃𝑐(0), ̃𝑦(0), ̃𝑔(1), �̃�(1)) = ∫ ∫ 𝑓𝐶∣𝑌 ( ̃𝑐(0), 𝑐(1) ∣ ̃𝑦(0), 𝑦(1), 𝜙)𝑓𝑌 ( ̃𝑦(0), 𝑦(1) ∣ 𝜃)1 (𝑦(1) ∈ �̃�)1 (𝑐(1) ∈ ̃𝑔) 𝑑𝑦(1) 𝑑𝑐(1)
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The likelihood that ignores the coarsening process is:

𝐿ign(𝜃 ∣ ̃𝑦(0), �̃�(1)) = ∫ 𝑓𝑌 ( ̃𝑦(0), 𝑦(1) ∣ 𝜃)1 (𝑦(1) ∈ �̃�𝑖) 𝑑𝑦(1)

This leads to a definition of coarsening at random, or CAR, that relates to conditions on the
coarsening distribution:

𝑓𝐶∣𝑌 ( ̃𝑐(0), 𝑐(1) ∣ ̃𝑦(0), 𝑦(1), 𝜙) = 𝑓𝐶∣𝑌 ( ̃𝑐(0), 𝑐⋆
(1) ∣ ̃𝑦(0), 𝑦⋆

(1), 𝜙)
For all 𝑐(1), 𝑐⋆

(1), 𝑦(1), 𝑦⋆
(1), 𝜙.

Each of these definitions has a unit-level variant, as MAR did above:

In the failure time example we have two contributions to the likelihood:

𝐿full(𝜃, 𝜙 ∣ 𝑦(0), 𝑐(0)) = ∏
𝑖∣𝑦𝑖≤𝑐𝑖

𝑓(𝑦𝑖 ∣ 𝜃) ∫
∞

𝑦𝑖

𝑓𝐶∣𝑌 (𝑐𝑖 ∣ 𝑦𝑖, 𝜙)𝑑𝑐× ∏
𝑖∣𝑦𝑖>𝑐𝑖

∫
∞

𝑐𝑖

𝑓𝐶∣𝑌 (𝑐𝑖 ∣ 𝑦, 𝜙)𝑓(𝑦 ∣ 𝜃)𝑑𝑦

If we have that 𝑓(𝑐𝑖 ∣ 𝑦𝑖, 𝜙) = 𝑓(𝑐𝑖 ∣ 𝜙) for all 𝑖, and that 𝜙 and 𝜃 are variationally
independent, we can write the likelihood as the product of 𝐿ign(𝜃 ∣ 𝑦(0), 𝑐(0)) and 𝐿rest(𝜙 ∣
𝑦(0), 𝑐(0))

∏
𝑖∣𝑦𝑖≤𝑐𝑖

𝑓(𝑦𝑖 ∣ 𝜃) ∏
𝑖∣𝑦𝑖>𝑐𝑖

∫
∞

𝑐𝑖

𝑓(𝑦 ∣ 𝜃)𝑑𝑦 × ∏
𝑖∣𝑦𝑖≤𝑐𝑖

∫
∞

𝑦𝑖

𝑓𝐶(𝑐𝑖 ∣ 𝜙)𝑑𝑐 ∏
𝑖∣𝑦𝑖>𝑐𝑖

𝑓(𝑐𝑖 ∣ 𝜙)

In this case, the censoring mechanism is CAR, but not MAR, as we saw earlier.

In the cigarette smoking example, let 𝑦𝑖 be the true number of cigarettes smoked per day,
and let 𝑐𝑖 be an indicator for the precision of reporting. Then define 𝑤𝑖 to be:

𝑤𝑖 = {[floor(𝑦𝑖), floor(𝑦𝑖) + 1] 𝑐𝑖 = 0
[20 × floor(𝑦𝑖/20), 20 × floor(𝑦𝑖/20) + 20] 𝑐𝑖 = 1

This assumes that people round down the number of cigarettes they smoke, rather than
rounding to the nearest integer, like you’d do if there weren’t a stigma around smoking.

Let the lower bound of the interval 𝑤𝑖 be 𝑤𝑖𝐿, then 𝑔𝑖 be defined as:

𝑔𝑖 = {𝑐𝑖 𝑤𝑖𝐿 mod 20 ≠ 0
{0, 1} 𝑤𝑖𝐿 mod 20 = 0

Suppose that 𝑓𝐶∣𝑌 (𝑐𝑖 ∣ 𝑦𝑖, 𝜙) = Φ(𝜙1 + 𝜙2𝑦𝑖)𝑐𝑖(1 − Φ(𝜙1 + 𝜙2𝑦𝑖)1−𝑐𝑖).
Then this example isn’t CAR, because the coarsening is dependent on the number of
cigarettes smoked.
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What does the likelihood look like?

𝐿(𝜃, 𝜙 ∣ �̃�, ̃𝑔) = ∏
𝑖∣𝑤𝑖𝐿 mod 20≠0

∫
𝑤𝑖𝐿+1

𝑤𝑖𝐿

𝑓𝑌 (𝑦 ∣ 𝜃)(1 − Φ(𝜙1 + 𝜙2𝑦))𝑑𝑦

× ∏
𝑖∣𝑤𝑖 mod 20=0

∫
𝑤𝑖𝐿+20

𝑤𝑖𝐿

(𝑓𝑌 (𝑦 ∣ 𝜃)Φ(𝜙1 + 𝜙2𝑦))𝑑𝑦 + ∫
𝑤𝑖𝐿+1

𝑤𝑖𝐿

(𝑓𝑌 (𝑦 ∣ 𝜃)(1 − Φ(𝜙1 + 𝜙2𝑦))𝑑𝑦

Little, Roderick J. 2021. “Missing Data Assumptions.” Annual Review of Statistics and Its
Application 8 (1): 89–107. https://doi.org/10.1146/annurev-statistics-040720-031104.
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