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Chapter 1
Introduction

This introduction is based in part on Klein, Moeschberger, et al. 2003, and in part on O.
Aalen et al. 2008 plus Fleming and Harrington 2005.

Survival analysis is the modeling and analysis of time-to-event data. Think about a
clinical trial for a new COVID vaccine and how you might model the length of time between
study entry and infection in each arm of the trial. Let X; be the time from trial entry to
infection for the i-th participant. These sorts of trials are typically run until a prespecified
number of people have become infected. Let n be the total number of participants in the
trial and let r be the prespecified number of infections. Let T; be the observed infection
time for the ¢-th participant. This means that for r participants, T; = X;, but for n —r
participants we know only that the time-to-infection is larger than the observed time. Let
C; denote the time from study entry for participant i to study end. Then T; = min(X;, C;),
and let §; = 1 (7T; = X;). The density of T; is related to the joint probability for X; and C;,
which is indexed by a possibly infinite dimensional parameter 0: Py(X; > t,C; > ¢). When
0; =1, and T; = X, the likelihood of the observation is

Y
u=t

@gfax>MQ>w)

while the likelihood for §; = 0 is

@Q4ux>a@>m)

Y
u=t

ou

Then T; = C; for the other n —r participants. Under the null hypothesis that the vaccine

has no effect, the population distribution function for all n participants for X;, C; is Pp( X7 >

)
u=t()

x,Cy > ¢). Then the joint density for the observed infection times is as follows:

i 0
H ((—%Pg(Xl > t(z),Cl > U))

u=t(;y i=r+1

r 0
f(ty,. . ty) =n! H (_%PG(Xl >u,Cp > t(i)))

i=1
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where t(;) is the i-th order statistic of the set {¢1,...,¢,}. Note that this is different from
most other data analysis where missing observations are not expected to occur with much
frequency. On the contrary, in survival analysis, missingness, both truncation and censoring
are expected to occur with nearly every dataset, so much of our time will be spent ensuring

our methods work when data arise with these peculiarities.

1.1 Independent censoring
Now suppose that X; 1L C7, and that # partitions into n and ¢, such that
Py(Xy>x,C1>c¢) = Py(X1>2)Py(Ch > c).

Then we can rewrite the joint observational density for 7T; as:

f(tl,...,tn) =n! (ijn(t(i))) ﬁ P(X1 >t(i))

1=r+1

X (131%(01 >t(,;))) ﬁ fo(teiy)-

i=r+1

If we are only interested about inference about 7, the parameters that govern the distribution
of the true time-to-infection random variables, we can ignore the the distribution for the

censoring random variables (', and maximize the likelihood because, in 7:
F(tr, oo tn) o (H fn(tm)) [T P(X1>t)
i=1

i=r+1

We will talk in more detail about censoring in the coming lectures.

1.2 Mean time to failure

O. Aalen et al. 2008 notes that we cannot even compute a simple mean in this situation, so
something like a t-test will be useless. As an aside, let’s try to compute a mean from the
data above. Let T = = Y7 T;. We can show that lim,,_,., 7' < E[X;] with probability 1.

Proof. Let T; = X;1 (X, < C;) + C;1 (X; > C;). Then by the SLLN T 5 E[T].

E[T;]=E[X;1(X;<C)]+E[C1(X; > C)]
<E[XI (X, <C)]+E[X:L(X, > )] =E[Xi]



1.3 Swurvival function

How can we compute the mean time to infection then? One way to estimate the mean time
to infection is to first estimate the function Sy, (¢) = P(X; > t), which is also known as the

survival function. Recall this fact about non-negative random variables X; >0 w.p. 1:
E[X,] = f P(X; > t)dt
0
This follows from an application of Fubini’s theorem applied to the integral:

E[X,]= fo " wdPy, (u)
zfowfown(oggu)dtdpxi(u)
:[Ooofooo]l(OStSu)dPXi(u)dt
:fOMP(Xpt)dt

1.3.1 Properties of the survival function

Given that the survival function is defined as Sk, (t) = 1 - Fx,(t) (also known as the com-
plementary CDF) the survival function inherits its properties from the CDF. The survival

function:

1. Sx,(t) is a nonincreasing function

(\)

. Sy, (0)=1

w

. hmt_,oo SX,L (t) =0

4. Has lefthand limits:
h;ItISXZ(S) = SXi(t—).

ot

. Is right continuous:

An example of a discrete survival function is shown in Figure 1.1.



Discrete survival function
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Figure 1.1: Example plot of a survival function for a discrete survival time, bounded between
[0,10]

1.4 Hazard function

Another way to characterize the random variable X is the hazard function, which is typically
denoted as A\(t) or h(t) and is defined as

) 1

. 1 P(t<X;<t+At)
= lim —
A0 At P(XZ > t)

First, note that we can define P (X; > ) in terms of the survival function as:
llmSXZ(S) = SXi(t_)'
s/t

Of course, when X; is absolutely continuous,Sx,(t-) = S, (t), but when X; is discrete, or
mixed discrete and continuous, as noted above, it is not true in general that the survival
function is left-continuous.

A few things to note about A;(¢): when X is an absolutely continuous random variable,
which occurs when we're considering survival in continuous time, we can write this in terms

of the probability density function fx,(t¢) and the cumulative distribution function F;,(t):

Au(t) = Jim P(X;>t)
- lim FXi(t"'At)_FXi(t)X 1
AtNO At ]-_FX,(t)
_ in(t)
1-Fx,(t)



Let’s examine how the survival function and the hazard function fit together.

(t
Ay = 220
SXi(t_)
Note that we can write the hazard function in terms of the survival function instead of the
density, when X, is absolutely continuous:
At\O At P (Xz 2 t)
- lim SXi(t)_SXi(t"'At)x 1
AtNO At Sxi(t)

= ——SX (1)/Sx, (1)

A(t) = i

This implies that

d
7 log S, (t) = Ai(1).

If we integrate both sides, we get another important identity in survival analysis:

f “Hlog S, (t)dt:—/ou)\i(t)dt (1.1)
log Sy, () - log S, (0) = fo “AN(D)dt mote Sy, (0) =1 (1.2)

Sy (u) = exp(— [0 u/\i(t)dt) (1.3)

1.4.1 Properties of the hazard function

The relationship Sx, (u) = exp (— N )\i(t)dt) and the properties of the survival function reveal
the following facts about the hazard function and highlight its differences with a probability
density.

1. limy e Sx(t) = 0 implies that lim,. [ A(u)du = 0o
2. Given that Sx(t) is a nonincreasing function, A(¢) > 0 for all ¢.

So unlike a probability density function, A(¢) isn’t integrable over the support of the random

variable.

1.5 Density function for survival time

Given that we have Sx(t) and A(t) = SC):((Q)’ we can recover the density, fx(t) easily:

fx(t) = A(t)Sx (1)
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1.6 Mean residual lifetime

We also might be interested in the mean residual lifetime (mrl for short), or the expected

lifetime given survival up to a certain point:

We can compute this for an absolutely continuous random variable by using the survival
function:
[ (=) f (w)du [ S, (u)du
Sx,(z) - Sx,(2)

To derive the mrl in terms of the survival function, note that we can use Fubini again on

the numerator (Exercise 1), or we can use integration by parts:
oo oo d
[ w-a)pdu=- [ (=02 Sk (u)du
T T u

- ~(u-D)Sx @2, + [ Sk (wdu
and use the fact that lim, . Sx,(u) =0. We also need the following:

lim uP(X; >u) =0. (1.4)

This is a pretty weak condition, random variables with second moments satisfy this condition
(Exercise 2), as do random variables with only first moments. It turns out that under this
condition we'll have a weak law of large numbers (see §7.1 in Resnick 2019).

Suppose we assume that E[X] < co. Then we can write:
E[X]=E[X1(X <n)]+E[X1(X >n)]
Note that if we define X,, = X1 (X <n) then

lim X,, = X.

n—o0

By the Dominated Convergence Theorem (DCT), E[X,, ] > E[X]. Then
E[X]=E[X,]+E[X1(X >n)]
>E[X,]+E[nl (X >n)]
=E[X,]+nP(X >n)
By the DCT E[X]-E[X,] - 0 so
lim nP(X;>n) =0.

However, there are random variables for which E[X;] does not exist, but do satisfy Equa-
tion (1.4) (see the end of §7.1 in Resnick 2019).
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1.7 Cumulative hazard function

One final important quantity that describes a survival distribution is that of cumulative
hazard, which we’ll denote as A(t), though it is also denoted as H(t) in Klein, Moeschberger,
et al. 2003. This is defined as you might expect:

A= [ "Mu)du.

It has the important property that for any failure time X with a given cumulative hazard
function, the random variable Y = A(X) is exponentially distributed with rate 1. The
derivation is straightforward. Remember that P(X > t) = exp (-A(t))

P(A(X) > t) = P(X > A(¢))
= exp (-A(AT(1)))
= exp (-1)

1.8 Discrete survival time

We’ve been working with continuous survival times until now. If X is a discrete random
variable with support on {t1,%,... }, we lose some of the tidyness of the previous derivations.
We can define the distribution of X in terms of the survival function, P(X > t). First let
p;=P(X =t;), so

Sx(t)=P(X>t)= > p

Jltj>t
We can also define the hazard function for a discrete random variable:

P _ bj
S)((tj_l PjtDj+1+ ...

A(t;) =
Note that p; = Sx(tj-1) — Sx(t;), then

Sx ()

M) =1- 5765

If we let ¢y = 0 then Sx (%) = 1. This allows us to write the survival function in a sort of
telescoping series:
P(X >t) P(X >t5) P(X >t;)
P(X>t) P(X>t1) P(X>tj1)
_9x() Sx(ta) Sk ()
Sx(to) Sx(t1)  Sx(tj1)

P(X >t;) = P(X > to)

10



This yields another way to write Sx (¢):

Sx(t) = TT (1-A(%))- (1.5)

j‘tjgt

It turns out that we can write the survival function for continuous random variables in the

same way.

1.8.1 Connection between discrete and continuous survival func-

tions

Recall the definition of the hazard function:
. 1
A() = Jim = P(tsX <t+AL|X21)

Then if we think of AtA(t) asP(t < X <t+ At | X >t) and we let T be a partition of (0, c0)

with partition size At, we can use Equation (1.5) to represent the survival function:

Sx(t)= [ (1-\t)At). (1.6)

t]'ET‘tht

We can show that as the partition of the time domain gets finer and finer, we will recover

Sx (t) = exp(~ fy A(u)du)

Sx()= [ (1-A@)A) (1.7)
tieT|tj<t

log Sx(t) = > log(1-A(t;)At) (1.8)
tieTlt <t

We use the Taylor expansion of log(1 — A(;)At) for small A(¢;)At, assuming that \(t) is

sufficiently well-behaved.
log(1 - A(t;)At) & -A(t;)At.

Then

logSx(t) 2 > =A(t;)At (1.9)

t; ET|tj <t

As
Alitrilotﬁ;jq—)\(tj)At - fo AMu)du.
So, Sx(t) = exp(~ [y Mu)du), or
S (1) = exp(-A(1)) (1.10)

11



1.9 Examples
The first example we’ll run through is for an exponentially distributed survival time:
X; " Exp()).

The survival function is Sy (t) = e*. We can read off from this that A(t) = \t. What’s the
hazard function? Let’s plot the hazard function. What does this imply about the exponential

distribution (memorylessness)? The mean lifetime is % The mean residual lifetime is:

[T eMudu 1 eMdu

Y \ e-M
1

=3

This is a consequence of the memoryless property of the exponential distribution.

Another parametric distribution for survival times is the Weibull.
X; "™ Weibull (v, ).

The survival function:
Sx(t) = exp(—1°).

Again, we have that A(t) = yt®, so we can take the derivative with respect to ¢ to get the
hazard:
A(t) = yat®t

This is more flexible than the exponential distribution, though note that for a = 1, X ~
Exponential(), so the Weibull family contains the exponential family as a special case. The
« parameter allows for the hazard rate to have more flexibility than the exponential. If a > 1,
the hazard rate is increasing in ¢. This corresponds to an aging process, whereby the longer
something has survived, the higher the rate of failure. If o < 1, the hazard rate is decreasing
in t. This might correspond to something like the hazard for SIDS, which is quite high for
children before 1 year old, but drops off rapidly after 1. Let’s compute the mean lifetime,
E[X] = J;° Sx(t)dt, using a v-sub, v = 1, s0 va =t - Loaldv = dt:

i 1 1
[ exp(—yt*)dt = — / vatexp(—yv)dv
0 a Jo
11 1
= ETF(_)
Yoo @
CD(z+1)

1
’Ya

12



1/a
The mean residual lifetime is a bit more involved. Let v = yu® so (%) =u -y "%vé‘ldv =
du:

[+ 1 oo
f exp(—yu®)du =y~ = / vatexp(-v)dv
t a JAyte
1.1
=y MO=T (=, 1),
a

where T'(£,~¢*) is the upper incomplete Gamma function.

13



Chapter 2
Censoring and truncation

Now let’s delve into more detail about censoring, and how the likelihood can be built up
from the hazard function and the survival function. Klein, Moeschberger, et al. 2003 define
censoring as imprecise knowledge about an event time. If we observe a failure or an event
exactly, the observation is not censored, but if we know only that an observation occurred
within a range of values, we say the observation is censored. Let X;, as usual, be our failure

time, which is not completely observed. Instead if:

e X, €[U, 00), the observation is right censored
e X, €[0,V), the observation is left censored

e X, e[U,V), the observation is interval censored

2.1 Right censoring

Right censoring occurs when a survival time is known to be larger than a given value. This
is the most common censoring scenario in survival analysis.

Recall our definition in Chapter 1:

e Let X; be the time to failure, or time to event for individual i.

e Let C; be the time to censoring. It may be helpful to think about C; as the time to

investigator measurement.
o Let 51 =1 (Xz < Cz)

o Let T; = min(X;, C;).

Given our definitions in Section 2.1, when an observation is censored, or when a measurement

is taken of the survival time before the event has happened, d; =0 and T; = C;.

14



Censoring

o
S
g ] u}
€
Q8 ©
s ©
o
Study end
3 o
S A )
T T T T T
0.0 0.5 1.0 15 2.0

Calendar time (t)

Figure 2.1: Example of Type I censoring.

2.1.1 Type I censoring

The simplest censoring scenario is one in which all individuals have the same, nonrandom
censoring time. Imagine a study is designed to follow 5 startups that are spun out of a tech
incubator to study how long it takes a company to land its first contract. This information
will be used for designing investments 2 years from the study date, so the study has a length
of 1.75 years. We can say that all observations will have to have occurred, or not, by 1.75
years.

Figure 2.1 shows a potential result of the study, where 2 out of the 5 companies have not

landed a contract. In this case,
e For all individuals such that §, =0 — X, >C

[ ] 5121 — T’z:Xz

2.1.2 Generalized type I censoring

A more general scenario, which is closer to most examples in clinical trials, is when each
individual has a different study entry time and the investigator has a preset study end time.
This is called generalized Type I censoring. These study entry times are typically assumed
to be independent of the survival time. This is shown in Figure 2.2. When study entry is
independent from survival time, the analysis proceeds as shown in Figure 2.3. For generalized

type I censoring,

e For all individuals such that §, =0 = X, > C;

15



Censoring
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Figure 2.2: Example of generalized Type I censoring, where each individual has a separate

study entry time.
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Figure 2.3: Example of generalized Type I censoring, viewed in patient time.
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This is different from Type I censoring in that each individual has a different censoring time.

2.1.3 Type II censoring

Type II censoring occurs when all units have the same study entry time, but researchers

design the study to end when r < n units fail out of n total units under observation.

e For the first 7, lucky or unlucky participants, 6; =1 == T, = X(;y or the ¢*" order

statistic.

e For the remaining n —r individuals, §; =0 = X; > X(,.

2.1.4 Generalized Type Il censoring

You may be wondering, what happens when units have differing start times but we want to
end the trial after the r-th failure? It turns out that this was not a solved problem until

Riihl et al. 2023, which was quite surprising to me.

2.1.5 Independent censoring

A third type of censoring, helpfully called independent censoring, takes X; 1L C;, and thus

conclusions similar to those of generalized type I censoring can be drawn:
e For all individuals such that §; =0 = X, > C;

[ ] (5121 — T’z:Xz

2.2 Noninformative censoring
All of the previous censoring scenarios can be summarized by the following formula:
) 1
= — <X; >t,C; > .
A(t) Al%tr\r}OAtIP’(t_Xl<t+At|XZ_t,Cl_t) (2.1)
Note that this implies the following:

which is equivalent to writing that failure

17



For independent censoring, Equation (2.2) holds, given that P(X; > ¢,C; > ¢) = P(X; >

t)P(C; > ¢). Note that the observed hazard for uncensored failure times:

~ 2 P(X; > u,Ci > 1) |yey _ — L Sx (u)
P(X, > 1-.Cioto)  Sx(t-)

(2.3)

Here’s a counterexample:

Example 2.2.1. Dependent failure and censoring
Let P(X; > z,C; > ¢) = exp(—ax — pc — fzc). We can find the marginal survival functions

just by evaluating P(X; > z,C; > 0) and vice-versa, which yields:

P(X;>x) =exp(-ax)
P(C; > ¢) = exp(—puc)

This yields a constant hazard. However, the observable hazard is the following:

_O_ZP(Xl > U,CZ‘ > t) |u=t
P(X;>t=,Ci > t-)
~ZP(X; > 1,0 > ) |us
P(X;>t-,C; > t-)

=a+0t

=p+0t

This leads to an observable survival function:

Sx(z) = exp(~ax - 0/227)
Sc(c) = exp(-pc - 0/2¢?)

Note that Sx(z)Sc(c) # exp(—ax — pc - fzc).
However, if we calculate P(X; > z,C; > X;) we get:

f°° _aﬁp(xi > 11, Gy > 1) Juct dt = fw(a +0t) exp(—at — ut - 012)dt
T u T

while

[ ()Se) e di = [ (% exp(-at - 0262)) exp(-pt - 0/2¢%)
= [oo(a +0t) exp(~at — ut — 0t*)du

Another interesting example is the following:

18



Example 2.2.2. Dependent failure and censoring can be noninformative

Let Y7,Y5 and Yi, be exponentially distributed with rates aq, as, i, respectively. Let X =
Y1 A Yo and C = Y5 A Yys. The survival function P(X > x,C > c¢) = P(Y; > x,Yy > ¢, Y12 >
x V) = emmwmazeazave Then marginally X is exponential with rate a; + aq2, which is also
equal to its hazard function. In order for noninformative censoring to hold, we need to check
Equation (2.1), or that

1
a1+a12:AlitI\I.lOKt]P)(tSX<t+At|X2t702t) (24)

Because t + At vit=t+ At as At >0,

i e-Qit-ast-aiat _ e—(oe1+0c12)(t+At)—Oé2t 9
At At (25)

which just equals e — Le-(c+a2)s |, or (o + ayp)e1t-e2t-a12t Then

) 1 ~ (051 + a12)6—o¢1t—a2t—a12t
Alltr\r}O Y P<X<t+At| X >t,C>t)= orianiant (2.6)
=01 + Q2 (27)

So in this case, while X and C' are dependent, we still have noninformative censoring.

The benefit of noninformative censoring is that we can ignore the censoring random

variables when constructing the likelihood for the survival random variables.

2.2.1 Reasons for informative censoring

A simple hypothetical situation with informative censoring would be one in which sick pa-

tients are lost to follow-up.

2.3 Truncation

While censoring can be seen as partial information about an observation, truncation deals
with exact observations of selected units. The simplest example of truncation is when mea-
surements are made using an instrument with a lower limit of detection. Imagine using a
microscope to measure the diameter of cells on a plate that has a lower limit of detection of
5 microns. If interest lies in inferring the population mean diameter of the cells, one must
take into account the fact that only cells with diameters of greater than 5 micros can be seen

with the microscope.
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Failure to take truncation into account can be a source of bias in inference.

E[X;]=E[X;| X;>V]P(X;>V)+E[X; | X; < V] P(X; < V)
E[X; | X;>V]+P(X;<V)E[X;| X; <V]-E[X;| X; > V])

<E[X;| X;>V]

The last line follows because (E[X;| X; < V]-E[X; | X; >V]) <0. Using an estimator for
E[X; | X; > V] when the target of inference in E [ X;] would result in positive bias. Of course,
when the estimator instead estimates E[X; | X; < V] the bias would be negative. Depending
on the value of V' and the distribution of X;, the bias can be severe.

For example, suppose a researcher is interested in learning about the impact of medication
refills on the lifespans of patients. The researcher has access to a database in which they
select patients who refilled medications at least once. The researcher subsequently selects a
control group that is perfectly matched to the medication refill group, and upon analyzing
the data, the analyst discovers that refilling prescription medication leads to longer lifespans.
What is wrong with this analysis?

The observations in this example can be said to be left-truncated, because the researcher
conditions the observations in the treatment group on having a lifespan long enough to fill
a medication.

Formally, we say that the density for a truncated observation is conditioned on the

probability of the observation lying in the truncated region.

o If a researcher selects 1(X;>V) we say the data are left-truncated, and fx(x) =
-4 Sx(x)
%X(V)

o If a researcher selects 1 (X; <U) we say the data are right-truncated, and fx(z) =
—%SX(@
TS

e If a researcher selects 1(V < X;<U) we say the data are interval-truncated, and

-4 Sx(x)
fx(#) = 550
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2.4 Likelihood construction

We now turn to how to construct likelihoods in each of the prior scenarios, under censored

or truncated data. As a reminder:
e Let X; be the time to failure, or time to event for individual i.

e Let C; be the time to censoring. It may be helpful to think about C; as the time to

investigator measurement.
o Let 5@ =1 ()(z < Oz)
o Let T; = min(X;, C;).

When 6; = 1, we observe T; = X;; this is the event that {X; = T;,C; > X;}. When §; = 0,
we observe T; = C; this is the event that {C; = T}, C; < X;}. Let the joint distribution of
X;, C; be written as Py(X > x,C > ¢), and further let 6 = (1, ¢) such that Pp(X >z,C > ¢) =
P,(X >x)Py(C >c| X >x). We showed in Chapter 1 that the likelihood corresponding to
the random variables T;, d;, fo(t,d), can be written in terms of partial derivatives of the joint
density function when X; and C; are absolutely continuous random variables.

1-6

d 009
lt.8) = (- 5o P > 0,05 ) o) (- Po(X > £.C50) o)

Let’s rewrite the partial derivatives in terms of their limits:

1 | 1-6
fo(t,0) = (AhtI\IAlOKtPG(t <X <t+At,C> t)) (AhtriﬂoKtPe(X >t,t<C<t+ At))

We can factorize the distribution function:
1 0
£o(t,5) = (AlitmOEPg(t CX <t AL X 51,05 )Py(C> | X > ) By(X > t))
N
1 1-6
x (Ali@OERﬁ(t <C<t+At| X >t)P)(X > t))

Assuming Equation (2.1), we can rewrite limasvo 27 Po(¢ < X <t + At | X >¢,C > t) as
) 1
AhtIE.IOEPn(tSX<t+At | X > 1)

Putting the expression back together yields:
1 o
£o(t,5) = (ilt@()&pn(t CX <t ALX > )Py (C> 1] X > )Py (X > t))

. 1 1-6
. (Ahtrilogp(ﬁ(t CO<t+ M| X >1)Py(X > t))
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and rearranging and subbing in A, (t) for the hazard function:
5 1 1-6
Fo(t,5) = O (D) By(X > 1)) Py(X > )Py (C> £ X > 1)} (gitmo CPt<C <AL X > t))
N
1 1-6

_ s O 1im —

A ()P (X > )Py(C >t X > 1) (Aht@o PO <t+AL|X > t))
This means that we can factorize the joint density:

f9(t7 6) = fn(t7 5)f¢(t7 5)

Thus, noninformative censoring and parameter separability yield a separable joint density.
This means that when we want to do maximum likelihood for survival data, we can ignore

the model for the censoring times, f4(¢,d), and focus on only the model for the failure times:
fa(t,0) = An(t)épn(X > ).

We can write this expression fully in terms of the hazard function by recalling Equation (1.3):
t
fo(t,6) =\, (1)° exp (— f )\n(u)du) : (2.8)
0

Example 2.4.1. MLE for exponential survival time Let X; £ Exp(a) and assume we have
independent censoring (X; 1 C;), the parameters for the censoring process are separable from
a, and that C; are iid such that E[C;] < co. Then our observed data are T; = min(X;, C;)
and 0; = 1 (X; <C;). According to Equation (3.1) we can write the likelihood as

fa(tlv s 7t'rL7 517 s 7571,) = H Oéai exp(_Z?:l _/.Otiadu)
i=1
- i exp(-0 T 1)

The log-likelihood is

n n

log(fa(tl, R ,tn,él, ce 75n)) = lOg(Oé) 257’ - Oéztz

i=1 i=1

which has the maximizer

n
A Dicl 0;
a==——.
Yic1 i
i=1 i
n
: . any
Let’s show that this converges a.s. to o as n - oco. We can rewrite g;—lt as
1=1"7

5 2 L(Xi <)
IYE XL (X, <C) +CL (X > Cy)
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The top and bottom expressions converge a.s. by Kolmogorov’s Strong Law of Large Num-

bers to

1 n a.s.
- Z 1 ()(z < Cl) - E(Xi,ci) []l (XZ < Cl)]
i=1

3

1 n
— S Xi1(X; < C) + Cil (X > C3) 5 Eqxyon [X1 (X < C) + CL (X, > Cy)]
nz1
We can evaluate the top expression using the tower property of expectation:
E(x, o0 [1(Xi <C)]=Eq, [Exo, [1(Xi <) | Ci=c]]
=E¢, [1-e ]

where the second line follows from the independent censoring condition. The bottom expres-

sion becomes:

Ex,.cn [Xil (Xi <Ci) + il (X; > )] = E¢, [Exyic, [XiL (X <) | Ci = c]]

k3

[
+Ec, [Ex,c, [c1 (Xi > ¢) | C; = ]]

1
= EC: [—(1 - (1 + aC’i)e_o‘Ci)] + ]E’Ci I:Cie_aci]
(6]
1
= —E¢, [1-e¢
L, [1 -]
Thus "
Ziil 6@ a.s.
n -
i1 ti

To show that [, zae *dx = 1(1- (1+ac)e ), we can use the trick of differentiating under

a[cxeaxdxza[c—ie”dx
0 0o da
d c
_ -oz ]
a( da)[o e T

O‘( di) (=)
a(l—(1+ac)e‘o‘c)

o2

the integral sign.
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Chapter 3

Nonparametric estimator of survival

function

3.1 Derivation of Nelson-Aalen and Kaplan-Meier es-

timators

When we have (X;,C;) "' F such that noninformative censoring and parameter separability

hold, we showed in Equation (2.8) that we can write the likelihood for the survival process:

Foltr ot B 80) = [T A (8% eXp(— foti An(u)du)_

n
=1

This can again be simplified by collecting terms inside the exponential:

Folisee e by St 8 = (ﬁ )\n(ti)‘si) exp (- f; fot" )\n(u)du) . (3.1)

Let’s make a slight change to how we write the survival function. Define the indicator
function Y (u) to be
Yi(u)=1(t; >u).

This function is left-continuous, with right-hand limits, an example of which is shown in
Figure 3.1:

This allows us to rewrite our likelihood as follows:
fo(t, o tn, 61,000, 0,) = (H )\n(ti)5i) exp (— > [o Yi(u))\n(u)du) (3.2)
i=1 i-1
- (H )\n(ti)éi)exp (—fooAn(u) ZY,(u)du) (3.3)
i=1 0 i=1
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Yi(u)
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1.5
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0.0

Yi(u)

Time (u)
Figure 3.1: Example plot of an at-risk function

Discrete cumulative hazard function

Time (t)

Figure 3.2: Example plot of a discrete hazard function

For notational convenience, we’ll define the function Y (u) as:

Y (u) = ﬁ;m).

Then our likelihood is:

ot bt ) = (ﬁ An(ti)ﬁi) exp (— fow An(u)?(u)du) (3.4)

We can consider a nonparametric model for the hazard, estimating A\ at each t; as a
separate parameter. An example of this is shown in Figure 3.2, which corresponds to the

discrete survival function in Figure 1.1. In order to evaluate the integral

fo T AW)Y (u)du,
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Discrete cumulative hazard function
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Figure 3.3: Example plot of a discrete cumulative hazard function

note that we can rewrite A(¢;) as
A(t:) = A(t:) = A(ti-),

where A(t) is the cumulative hazard function. We'll write as A(u) as dA(u). Finally,
recall that because S(t) is right-continuous, A(t) is also right-continuous. We’ll also need
a bit of integration theory from Lebesgue-Stieltjies integrals. Suppose that G is a right-
continuous, monotone function on [0, 00) with countably many discontinuities at a;, and let
dG(a;) = G(a;) — G(a;—). Then for a measurable function F' on [0, 00), the integral over a
set B

]gpxxymxx)z S F(a;)dG(ay).

i|ai€B

Using these results, the integral can be evaluated to
\A(W@MM@M:ZMWWW
j=1

Let’s take the log of the expression to get a log-likelihood:

10g fi(t1, s tn, 61,00 0) = 2 8 log( N, (8:) = DN, (8)Y (¢5) (3.5)
i1 j=1
Taking the gradient with respect to A, (¢;) gives
S5 _
1 teeoitn, 01,...,0p) = —— = Y (t;). 3.6
\% ngn( 1 ) 1 ) An(tz) ( ) ( )

Note that the Hessian is also diagonal, which implies asymptotic independence of A(¢;). This
is solved at
0i

j‘n(ti) = ?(t)

(3.7)
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This gives an expression for A(t):

AN = Y

_ (3.8)
i[6;=1,t;<t Y (t:)

This also gives an expression for S(t):

1
SEM(4) = (1-=
iaillq,tiﬁt Y(tl)

This is also known as the Kaplan-Meier estimator. An alternative expression is:

). (3.9)

SNA(t) = exp (_ Zz‘\éi:l,tist ﬁ) (3.10)

We can show that the cumulative hazard as implied by Equation (3.9) is asymptotically
equivalent to Equation (3.8). Given Equation (1.10)

KM _ ], 1
A lg(iéi[{tist(l 7(151))) 31

=— > log(l-=
i‘(sz:l,tiét Y(tz)

1
i6;=1,ts<t V(ti)

where the last line follows from the Taylor approximation of log(1 - z) ~» —x when x ~ 0.

) (3.12)

~

(3.13)

3.1.1 Kaplan-Meier estimator standard error

In order to get the standard errors for the Kaplan-Meier estimator, we again use the Taylor
approximation above, but for z = A(¢;). To see why, we note that:
log S¥M(t) = > log(1- A(t:)). (3.14)
i‘tiét

The Taylor expansion for each term in the sum is:

log(1=A(t:)) ~ log(1 = A(t;)) - (A(ti) = A(t:) (3.15)

1-X(t;)
Then

Var (log(1 —/A\(tz))) N Var (S‘(tz))

1
(1= A(t:))?
We can estimate the Var (S\(tz)) by treating A(%;) as a binomial random variable, estimating

the probability parameter as 5\(25@-), and, subsequently the plug-in variance estimate is

A(t:) (1= A(t:))
Y (t;) '
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We again use the Taylor approximation:
1

log(5'1(1)) = lox(S(1)) + 555

(™M) - S(1))

which leads to )
Var (log(SKM(t))) = S(t)QVar (SKM(t))

or

Var (S¥M(t)) = Var (log(S*(t))) S(¢)2.

We use the plug-in estimator for S(t) here, so we get:

Var (SKM(t)) = Var (log(SKM(t))) (SEM(¢))2,

Putting this all together along with the fact that \(¢;) B i A(t;), we get:

Var (SKM(t)) _ (SKM(t))2 Z )‘(ti)(l B A(ti)).

i‘(;i:l,tiét ?(tl)

Simplifying the expression %
Oi
Var ($54(1)) = (5*(1)* 3

e Y (1) (Y () = 6:)

28
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yields what is known as Greenwood’s formula:



3.1.2 Handling ties in the Nelson-Aalen estimator

We had assumed that no two events could occur at the same time, but for most real datasets
this isn’t realistic. A distinction must be made between a) assuming that ties are present
in the data because, despite the true events happening in continuous time and thus no two
events exactly coincide, the data have been rounded such that this exact ordering of events
is lost, or b) that the true events happen in discrete time, and so there are truly events that
co-occur.

In the continuous time scenario, O. Aalen et al. 2008 suggests using a modified estimator
for hazard at time ¢; when there are multiple d; = 1. Let d; be the number of events observed

at time ¢;. Then the proposed estimator for A(t;) is:

2_ (3.17)

Y(t; ) j
In discrete time the proposal is to use:
. d;
A(t;) = = (3.18)
Y (t:)

3.1.3 Handling ties in the Kaplan-Meier estimator

It turns out, after some algebra, that using either Equation (3.17) or Equation (3.18) results

in the following tie-corrected estimator for the KM estimator:

° (t) ) i|d; Qt,q( Y( z)

) (3.19)

Greenwood’s formula is then

KM _ KM 2 di
Var (S (1) = (5(®) ildizl,:tist V(t)(Y(t:) - di)

This is the more commonly known form.

3.2 Nonparametric tests

Now that we’ve derived the nonparametric estimator for the cumulative hazard function,
ANA(t) = Dildi=1 bt ﬁ, we may be interested in testing the hypothesis that two populations
have different cumulative hazard functions.

Intuitively it would make sense to compare the difference between the two cumulative

hazard functions up to some 7:

ATA(7) = AFH(7) (3.20)
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and if this difference were large relative to the standard error under the null hypothesis,
reject the null in favor of the alternative.

Let’s formalize this a bit more. If the null hypothesis is:
Ho: M\ (t) = M\ (8)Vt € [0, 7]

then we can represent this common hazard function at A(¢). Under the null, the nonpara-
metric estimator combines all of the event times into one dataset and estimates S\(t) Let
Y(t) = Yi(t) + Y1(t) be the total population at risk between the two samples. Let there
be n; and ny samples in each respective study set. Let t; < f9 << -+ < t,,1,, be the total
combined set of event times. Let d; be the total number of failures occurring at time ¢;, and
let d;; be the total number of failures occurring at time ¢; for sample j. Note that this could
be zero.

Then the Nelson-Aalen estimator, assuming discrete time ties, for the cumulative hazard

under the null is

ni+ng di

ANy = Y = (3.21)
i-ifrier Y (t:)
Then let the Nelson-Aalen estimator for the j-th cumulative hazard be
N ni+ng di‘
ATy = > J (3.22)

itinier Y (1)

Given the common index over t; we can compare the two sums more easily:

" di di
2= 2 (?](m - ?(u)) ' (3:29)

We can weight the comparisons differently by adding a weighting factor that is a function of
t and j:

ni+ng

d;
2= 2 Witk )(Y ) Y(u))' (3:24)

Crucially, this weighting function has the property that W;(¢;) = 0 when Y;(#;) = 0, because

the hazard rate estimator A;(t;) is not defined in this case. Let’s rewrite the statistic Z(7)
a bit differently to elucidate the statistical properties, assuming that W;(t;) = W (t;)Y ;(t,),
which satisfies the requirement that W;(t;) = 0 when Y ;(¢;) = 0:

ni+ng

d;
Z,(1) = - 1%:<TW (t)Y (L) (Y ol (ti)) (3.25)

nﬂf W, )( 3;((;))) (3.26)
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Now, conditional on d;, Y ;(;), Y (t;), d;; are distributed as hypergeometric random variables.
Recall the definition of a hypergeometric random variable: It defines the distribution of
successes (in our case this is failures) in a sample size of n from a finite population of size
N where the total number of successes is K, with mean n% The analogy to our scenario is
d;; is the number of failures in a samples of size Y ;(;) in a population size Y (¢;) where the

total number of failures is d;. Then

Y ()
Y (t;)

E[dij | di,Y;(t:),Y (t:)] = d;

For notational convenience, let’s call A;; = d;; - dz%

of Z;(7) is zero, because E [Aij | di7?j(ti)7?(ti)] =0so0

Under the null hypothesis, the mean

E[Ai] =By 5,570 [E[Ag | diY;(6:),Y (1:)]] = 0.
We can also compute the variance using our result.

Var (Z](T)) = Z W(ti)QVar (AZ]) + 2 Z W(tl)W(tj)COV (Aija Ak])
i i<k
Given the hypergeometric distribution, we can read off the variance as
(k) (1 ) ?_j(ti)) Y(t:) - d
Y (t) Y(t:) ) Y(t:)-1

Var (AU) =d

Now let’s compute Cov (A;;, Ay;), noting that i < k. We know that E[A;;] =0, so we just
need to compute E[A;;Ax;]. We can use the tower property of expectation. First we need
to define something called the history, or the filtration, of the process. A filtration is an
increasing family of o-algebras, {F;,0 <[ < oo} such that F; c F,, for all [ < m. This is a way
of formalizing the idea that as time progresses, information about events accrues. If an event
EeF then E[1(FE)|F]=1(F), because we're conditioning on the full set of information,
and F is part of that information. It’s analogous to saying for two random variables XY,
E[XY | X]=XE[Y | X]. Taking this approach below, we show that the covariance is zero.

Let Fj be the collection of information just before t;, which means, more formally that it is

fk = O'{dil, dﬁ,?l(ti),?ﬂfi,i < k} (327)
Then
E[AijAr;] = E[E[Ai;Ag; | Fill (3.28)
=E[A;E[Ay; | Fil] (3.29)
- 0. (3.30)
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Where the last line follows because

E[ Ak | Fil = By vy vy LB [Aks | Frr di, Y1), Y (£:)]] (3.31)
-0 (3.32)

as we showed above. Thus,

Var (Z;(7)) = ZW(ti)2Var (Ai5) (3.33)
_ 2 ‘}_/j(ti) B Y;(t)\Y(t:)-d;
=2V (dl (5 (1 (1) ) V(i) -1 ) (534

Note that, due to A;; being mean zero, we have that
Var (AU) = Edi7?j (ti),?(ti) [Var (Al] | di, ?](tl),?(tl))] + Var (E I:AZ] | di; ?](tl), ?(tz)])
=By, 5, v [Var (A | i, Y;(6), Y (1))]

Then
Var (Aij) = By, 3,07 [Var (A [ 4, Y;(8), Y (1))]

This means that we can construct an unbiased estimator for Var (Z;(7)) by the following:
Var (Z;(7)) = YW (t:)*Var (Ai; | di, Y (1), Y (1))
and
E|Var (Z;(7))] = ;W(ti)% [Var (A | di, YV(1:),Y;(1:))]
= 2 W(t:)*Var (4;)
= \;ar (Z;(7))

We won’t go into the details yet, but it turns out that
Zi(T)  asympr.

= Normal(0, 1)
Var (Z;(7))

One could use this result to define a rejection region that is calibrated under the null.

32



3.3 Confidence intervals

In lecture 5, we derived Greenwood’s formula for the variance of the Kaplan-Meier estimator.
If we wanted to construct asymptotic, point-wise confidence intervals for the KM estimator,
we can go about it in several ways. The most straightforward way to compute confidence
intervals is to directly use the estimated survival function at ¢, and the standard error

estimator from Greenwood’s formula. Let d(t) be

Vo
i T Y () (Y (1) = di)

Then our confidence interval, C¥M i
CKM = (SKM(to) - Zl—a/2a-51KM(t0)v S¥M(t0) + Zl—a/Z&SKM(tO))

The issue with this confidence interval is that it is not guaranteed to be greater than zero
or less than 1, so we may have nonsensical results for upper and lower bounds. A solution
is to build a confidence set for a suitably transformed Kaplan Meier estimator, and use the
inverse transformation to enforce the natural [0,1] bounds. One option is to use the logit
transformation, another is to use the log-log transformation.

We’ll walk through the log-log transformation:

Note that we have the following result from lexture 5:

Var (log(SKM(t))) S(t) ——Var (SKM(t))

and J

Var (log(S¥M = = _

(lox( ®) i|di—zl;tiﬁt Y () (Y (t:) - d;)
Then
log(~log(S¥M(1))) ~ log(~log(S(t))) - m(log(é‘m(t)) —log(S(¢)))
So
Var (1Og(_10g(S«KM(t)))) ~ m\/ar (1og(§KM(t))

SE(log(-1og(S*()))) ¥ ——=~6(t)

lo (S(t))l
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Let u = log(-log S(t)), @ = log(~1log(S¥M(t))), and &, = SE(log(-log(S¥M(¢)))). Then
SEM (1) = exp(-€?).

Note that exp(—e*) is a monotone decreasing function of its input, u. This means that for
a set [a,b]

a<u<b = exp(—e) > exp(—e*) > exp(—e€®).
We'll take it as a given that asymptotically,

U—1U d

- N(0,1).

u

Then we can derive an alternative asymptotic confidence interval for the Kaplan-Meier es-
timator of survival at time ¢, by transforming a confidence interval for u. Let zi_o/o be the

1 — /2 quantile of a standard normal distribution with CDF &, or

Zl-af2 = (I)_l(l - 05/2)

u—u o o
P(-z1-a2 € —— < 21-0j2) = P(4 = Gu2ioajz SUS U+ Gutioag2)
u

= P(eXp(_eﬁf&uzl—a/Q) > eXp(_eu) > eXp(_eﬁ+€ruzl_a/2))

= P(exp(_eﬂe—&uzl—a/Q) > exp(—e“) > exp(—ef‘e&“zlﬂﬁ))

—Guz1_q/2 3u217a/2)

= P(exp(-e")* > exp(—e") > exp(—e")°

o~ SBos(-1os(S"M(1))z1_o /o

= P((5"M(1))
> (5"M(1))°

> S(1)
).

SE(log(~1og(5*M ()21 _q /2

So

1>(9@)e((SKM(w)

SBos(~10a(S" M (1)))z) a2

L(SMM ()

—SE(log(—log(SKM(t))))zlfa/z )) asympt. 1

(3.35)

3.4 More on log-rank tests

I motivated the log-rank test by stating that we wanted to compare estimates of the hazard
function. Let’s do a quick derivation to show why this is the case: We start with the weighted

log-rank test as we have derived it:

C S e [ - g )
mﬂl%me@J¢Wm) (3.36)
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We can express this in terms of hazard estimators \;(t;) = % . Let’s let j e {1,2}. Then

Yt
S W) (dij —dZ?_j(ti)) R (] e i (ti))
i=1]t;<r Y(t:) ) =i Y(t:)
_ ”i‘? W) di;Y (t;) - (_dij +dij')7j(tz‘))
i=1t;<T Y(ti)
(M)A T0)
i=1t;<T Y(ti)
- mim W(ti)?j’(ﬁ)?j(fi) (_dm _ Ay )
i=1fti<T Y(t) Yty V()

Thus we can see that Z;(7) = =Z5(7). Let’s rewrite this in terms of integrals over the positive

reals

ni+ng Vj/(tl)?](tl) dij dij’ ~ S M R 4
i_%gw(ti) Y (t:) (?j(ti)‘vj,(ti))- fo W(u)——= (dAs(u) - dAs(u))

A more general Lebesgue-Stieltjies theory will show that the integral above is well-defined.
More on this later...
Let’s say we're going to test multiple groups for equality of hazard rates. Then we will

write the log-rank statistic like so, with n = Z}]:1 n;:

Zi(T) = i W(t;) (dij - d‘?j(ti)) (3.37)

i=1[t<r Y (t;)
The variance of Z;(7) is as was derived. We can show, and I mentioned, that d;;,...,d;s |
di,Y1(t:),...,Y j(t;) is multivariate hypergeometric distributed. That means we can derive

the variance and the covariance for these random variables. I'll spare the details here. Given
the result that in the two-group test, Z;(7) = —Z2(7), we might expect the Z;(7) to be
linearly dependent. This is indeed the case, which we can see from the fact that the sum of
all Z;(7) is zero. Then we might ask how do we construct a test statistic from a degenerate
random variable. The answer is that we choose J —1 of the statistics, and it doesn’t matter
which statistics we choose. Given the covariance matrix >, we can construct a quadratic

form:
X2 = (Zl(T), ZQ(T), ceey ZJ_]_(T))Z_l(Z]_(T), ZQ(T), ceey ZJ_l(T))T (338)
which, under Hy, is asymptotically distributed x? with J -1 degrees of freedom.
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Let Z(7) = (Z1(7), Z2(7), ..., Z;(7))" and let ¥ = Cov(Z(7)). To show why it doesn’t
matter which groups we choose, imagine we have two matrices A € R/~ and B € R/-1*/
which, when left multiplying the vectorZ(7) select subsets of the J — 1 groups. An example
of A for J =3 might be:

100
(3.39)
010
Let both A and B be rank J - 1. We define x% to be
4 = (AZ(T))T(ASAT) L AZ(T) (3.40)
X% = (BZ(7))' (BB 'BZ(7) (3.41)

As A and B are full-row-rank there exists an invertible matrix C such that B = CA. Then
X5 = (C’AZ(T))T(C’AZATC’T)_lCAZ(T) ( )

= Z(T))TATC'T(C'T)_l(AEAT)_lC_lCAZ(T) ( )
=Z(7))TAT(ASAT) T AZ(T) (3.44)

= (AZ(7))"(ASAT) 1 AZ(T) (3.45)

(3.46)

= x4
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Chapter 4

Parametric and nonparametric

regression models

This chapter combines content from O. Aalen et al. 2008, Klein, Moeschberger, et al. 2003,
Harrell et al. 2001, Collett 1994, and Keener 2010.

Thus far we have dealt exclusively with simple univariate estimation. More often than
not, we will also have covariates associated with our failure time observations. Let the ob-
served failure data, be, as usual X is time to failure, C; is time to censoring, T; = min(X;, C;),
is the observed event time, and ¢ = 1 (X; < C;) is the censoring indicator. Suppose we also
have covariates for each individual 7 z; € R*. These could be age, sex at birth, comorbidi-
ties. Over a short enough timespan, these covariates can be considered fixed over time.
Other covariates, like blood pressure, or time since last colonoscopy, would be time varying
covariates, which we’ll denote as z(x);.

Much of our study has been on the hazard function A(¢). We’ll consider this parameter-
ized by a vector of parameters 6, so we’ll write A(¢ | ) for the hazard function. In order to

incorporate covariates into the hazard rate, we’ll work with relative risk regression, or

Ai(t) = Mo(t | 0)r (B, z:)

where r is a function R - R*. Note that this assumes that all individuals share a common
baseline hazard, \o(¢ | @), and have time-invariant, individual relative risk contributions
r(B,zi). A common choice is that r(83, z;) = exp(27 3).

The function is called the relative risk function because when we compare the hazard

rates for two individuals ¢ and j, the common baseline hazard drops out of the comparison:

Ai(t)
Ai(t)

= exp(2i)" B)/ exp(2] B).
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Proportional hazards

1.0

Sx(t)
0.6

0.4

0.2

0.0
|

Time (t)

Figure 4.1: Example of survival functions with proportional hazards

Of course, the above holds with general r(3, z;). Let’s see what this implies for the survival

function for ¢ vs. j:

Si(t) =exp (— ‘/:eziTﬁ)\o(u | O)du)

t i B
= exp (— f Ao (u | O)du)
0
TB ZTB

t ezj e J
= exp(—f )\O(u|9)du)
0

Tp

= exp (— /:)\O(u | O)du)ezj

T
e

(z;-T—z
= 5;()°

What this means is that the survival curves never cross. To see why, note that S;(0) = 5;(0) =
1, and WLOG, suppose (z] - z] )3 < 0. Then S;(t) > S;(t) for all ¢. See Figure 4.1 for a
demonstration of proportional hazards. See Figure 4.1 for a demonstration of proportional
hazards and Figure 4.2 for a demonstration of nonproportional hazards.

Proportional hazards (or relative risk) models assume that the survival functions never
cross, which is a strong assumption.

Let’s do a simple example.

Example 4.0.1. Simple exponential regression The following example is adapted from Col-

lett 1994. Suppose we have individuals grouped into two groups, groups 1 and 2, and let z;
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Not proportional hazards

0.8 1.0
|

Sx(t)
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0.4

0.2

Time (t)

Figure 4.2: Example of survival functions that do not adhere to proportional hazards

equal 1 for those in group 2 and 0 for those in group 1. Suppose further we have noninfor-
mative censoring, parameter separability, and exponentially distributed survival times with

common baseline hazard of A, so we have observed the following dataset:

{(tl,dz,zl),z = 1, e ,n}

Then the hazard rate for group 1 is A, while the hazard in group 2 is Ae®. Let ny = Y,(1-2;)

and ny = sum;z;. Then the likelihood contribution for the individuals for whom z; = 0 is

H )\61' e—>\ti

i|2;=0

and the likelihood contribution for individuals in group 2 is

H (/\eﬁ)éie—)\eﬁti

i|Zi:1

We can simplify this. Let r; = ¥,(1 - 2;)0;, and let 7o = ¥, 2;0;. Let T7 = ¥,(1 — 2;)t;, and
Ty =3, zit;. Then the joint likelihood may be written:

! e—ATl ()\65)7"2 ef)\eBTz =\t +7o 67/\T1 67"2,86—)\6BT2.

Let (A, 5) be the log-likelihood function. Then the score equations are

T +7Ty

0

0
%E()\, 6) 9 — AG’BTQ

—T1—€’8T2
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solving these for the unknowns is

r + 7y
T1 + GBTQ
— =e
AT5

=)\

which simplifies to

1
i
T2/7’2
T2 Ty
Ty

A

&b

These estimates make sense: The first is the reciprocal of the average survival time for those
in Group 1, and the second is the ratio of the average survival times in each group.

We can show using Example 2.4.1 that both of these estimators converge a.s. to the true
values. 72 et Ll

77‘1

Let’s find the asymptotic variance of the estimand /3

0 0 T +7Ty
“Z = = _ 4.1
o (an) =75 (1)
o (0
=y = —ePT 4.2
55 (5r00) - -em, (4.2
o (0
— =\ =-\e’T 4.
35 (5500.0)) = e’ (4.3
Then the observed information matrix is
7“1+2’r'2 ﬂT
oo o (4.4)
eﬁTg A@’BTQ
which has the inverse:
1 BTy —ePT.
BT . r€+r i (45)
(7‘1+T§\)€ 2 _ 2672 -efT, 5

So the plug-in standard error for (5 is

1472

>z
(ri+r2)efTy 28712
- ¢ BTQ
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Plugging in the MLEs gives

7 T1+7T2
(r1/T1)? _ T +To
Tyrg - V
(r1+r2) Tyrs )2 T2

o
r1/T1 ( r1

We can use this expression to generate an asymptotic confidence interval for 5:

P(B€Cﬁ)=P(BE(€B—Zla/2 T1+T27@B+21,a/2 T1+T2))
V rre V r1To
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In the preceding example, we shied away from using the Fisher information because T,
was not easily accessible. But we can use the results from Example 2.4.1 to derive an exact

expression for the asymptotic sampling variance for the MLE.

Example 4.0.2. Continued example This is an expansion of the example in Collett 1994.

% ((%g(w)) I (4.7)
% (%e(mp)) - ST (4.8)

Using the results of Example 2.4.1, we know that

E[r1] =nEg, [1 - e‘)‘ci] , Ers] = noEg, [1 - e"\eﬁci] ;andE [Ty] = ngéﬂic{ [1 - e‘)‘eﬁci]

Then the Fisher information is

n1Ec. [1—6_)‘Ci ]+n2]Ec. [1—€_Aeﬂci:|
i i 1
32 XHQECi [1 —€

%ngEci [1 - e‘AeBCi] nyEe, [1 _ e—AeBCi]

et (4.9)

Let E[ry] =E¢, [1-€e?%] and E[r;s] = Ec, [1 - e*’\eﬁci]. We know the asymptotic variance

of the MLE is the inverse of the Fisher information matrix. The inverse is:

2
n1E[ri1 |+noE[r; n1E[ri1 |+noE[r;
mmaB [ra B [ra] | -noB[rp] A MEHEGEIE || -t

So the asymptotic standard error for S is

nlECi [1 - e_ACi] + HQ]ECZ_ [1 — e—AEﬁC,L-]

ningBe, [1 - e?%] Eg, [1 - e—AG"Cz‘]

4.1 Asymptotic interlude

As you've already no doubt gathered, many of the results for inference and hypothesis
testing in survival analysis rely on asymptotic normality of the MLE. Before we get too
much further into the quarter, I thought it would be a good idea to review the asymptotic
results for maximum likelihood. This outline of results is from Keener 2010.

Let X;,i=1,2,... be distributed i.7.d. with density f, where 6 € RP. We suppose that the
support of X; does not depend on 6, and that our MLE’s are consistent for 8. This is pretty

mild, and only requires that likelihood ratios are integrable and our model is identifiable.
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Given these conditions, we can expand the gradient of the log-likelihood evaluated at the

MLE ¢ (é) around the true parameter value 67 in a one-term Taylor expansion:
Vol (0) |9=én= Vol(0) lo-ot +V3€(9) |9:én (én _HT)

where 6, is a point on the chord between 6, and 8. We can rearrange this by noting that
Vol(0) lg—g,= 0, and solving for 0, — 0:

R 1 1 R
Vol(0) lo-gt +V5l(0) lg_g, (6n—0") = %V(;é(ﬁ) |90t +%V3€(9) log, (6n—0)
1 NZD A
= %ng(e) |90t +7V3£(9) lg=g, (6.~ 0")
1 1 .
= %V(;E(Q) -6t +EV3€(9) lg=g, /(0 0")

Solving for \/n(f, — 01) gives

Vit =) = (< T30 1, ) =T0H8) o

Writing out the expressions,

1
ﬁwf(@) lo=ot,  Vl(0) lozg.

shows that we will be able to use multivariate CLT, which we’ll take as given and the weak

law of large numbers (also taken for granted). Recall the multivariate CLT:

Theorem 4.1.1. Multivariate CLT, (Keener 2010) Let X, X3, ... be i.i.d random vectors in
R* with a common mean E [ X;] = u and common covariance matrix ¥ = E [(X; — p) (X; — ) T].
If X = %, then

V(X - p) kit Normal(0, X2)

Rewriting each of the terms as explicit sums:

%ww) o =/ i(velog £ (X)) locar (4.11)
(25300 ) = (1 3F308 £oX0) ) (412

By the multivariate central limit (MCLT') theorem, Equation (4.11) converges in distribution

to
\/ﬁ% Zn;(Ve log fo(Xi)) |a:efiN(OaE[(Wlnge(Xz‘)) lo-ot (Volog fo( X)) 12yt ])
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Note that Z(6%) = E [(Vg log fo(X:)) lg=et (Volog fo(X5)) |g:m]. We can rewrite the matrix in
Equation (4.12) as:
1, 1 1,
==V50(0) lo=a, = ~ 2 (V5108 fo(X:)) lo-or Z(Valogfe(X ) lo-g == Z(Ve log fo(X:)) lo-or
i-1

o1 i=1

3
3

(4.13)

If we have conditions on the matrix of second derivatives, like a Lipschitz condition almost

everywhere:

up (V3 1og fo(X,) lo—r ~ 3108 fo(X0) o), | "€ M 2~

k,j

Then

H% (V3108 £o(X0)) st = D(VE 108 fo(X0) b

= H Z(V(,logfg(X )) lo-ot =(V31og fo(Xi)) lo_s

=1
(4.14)
< M1y, |6, - 07| (4.15)
5 0, (4.16)

where the last line follows from the consistency of én and that én lies on the chord between

6, and 6. Thus, by the Weak Law of Large Numbers and the continuous mapping theorem

Theorem 4.1.2. Continuous mapping theorem For a sequence of random variables X, 5X

and a continuous function g on a set C' such that P(X e C') = 1, then:
9(X) > g(X) (4.17)
We can see that the following holds
L9200y L = 292000 st ~292000) |5 ~2v2000) | (4.18)
n'o O=0n ~ ) VO 6=0f n'o 0=0,, — VO 0=0t .
SEy, g [~(V5 108 fo(X1)) lpoot] (4.19)

Given that we’ve shown:

%Vﬂ(@) lo-o1 iN(OaE[(WlOg fo(Xi)) locot (Volog fo(Xi)) 7 1)) (4.20)
(=30 lo-3,) ™ 5 B, [-(T3108 fo(X0)) o] (1.21)

we can use Slutsky’s theorem + multivariate normal theorey to derive the limiting distribu-

tion of the product of these sums
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Theorem 4.1.3. Slutsky’s theorem For X, 4 X,and Y, 2y
Y, X, SvX (4.22)
X, +Y, SV +X (4.23)

Thus by Equation (4.22)

1
(—%V%é(@) |9:(§,) \/1_V9€(9) lo- m—’

N(O,E[—(Vglogfg(Xl)) |9:9T]_ E [(Volog fo(X:)) lo=gr (Volog fo(X:)) o] (E [-(V51log fo(X1)) |99T]_1)T)

Under the assumption that our model is correct, we conclude that

Ey,.si [~(V5log f5(X1)) lg-st] = Z(67) (4.24)

so, assuming that the Fisher information is invertible, again by the continuous mapping

theorem we conclude

(-=930) ,5,))" 2 TON) (4.25)

Furthermore,

E[(Volog fo(X)) oot (Volog fo(Xi)) [f_g] = Z(67) (4.26)

so let Y = /n(f, - 01) so Y is asymptotically multivariate normal, then just using standard
results for variance covariance of random vectors,

E[-(V5log fo(X1)) \0:9*]711@[(% log fo(X:)) lo=or (Volog fo(X:)) lg_pt ] (E[—(Vglog Jo(X1)) |a=m]71)T
=Z(0H ' Z(oHZ(7)
=Z(0")"

Putting this all together shows that

(b, - 01 S N(0,Z(61)™)

Estimators of variance-covariance matrix

In the previous section, we encountered several consistent estimators of the variance covari-

ance matrix:

1
=~ V5((0) lo-o1 S I(0")

1i1 Vo log fo(X0) oot (Volog fo(X0)) [y 5 Z(0T)

3
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These expressions assume that our inferential model matches the data generating model. In
the event our inferential model is different than the true data generating model, it can be
shown that the scaled MLE converges asymptotically to

(0, - 0") iN(OaE[—(Vglogfe(Xﬂ) |0=91]71]E[(V010gf0(Xi)) lo=at (Volog fo(X:)) lg_gt | E[-(V log fo(X1)) |a=m]71)

where the key difference is that 6 is no longer the parameter for the true data generating
process, but is instead the parameter the minimizes the KL divergence between the assumed
inferential model and the true distribution generating the data.

Thus, the following sandwich estimator for the variance covariance matrix is often pre-

ferred over either of the above expressions:

Y= (‘%ng(e) |9=é) %i(velogfe(Xi)) lg=o (Vo log fo(X)) IF_, (—%Vgé(e) |9=é)

i=1

5 Var (\/ﬁ(én -6")) (4.28)

where 6 is the MLE.

4.1.1 Asymptotic confidence intervals

For the most part, we’ll be concerned with univariate confidence intervals, but in multivariate
models like the Weibull distribution we’ll need to compute the full inverse of the Fisher
information. WLOG, let the index of the parameter of interest be 1, so the asymptotic

variance of our MLE for the parameter of interest is o7(01) = Z(67)7}. We can also define
o1 (0) = Z(0)7}.

I'll also ditch the n subscript and just let 6 be our MLE based on n observations. By
Equation (4.17),
ot (0) L
ot (0")
This allows us to use a plug-in estimator for Z(#7)-1, Z(6)-1.
V(0 - 6}) _ou(6) V(0 - 6})
o1(0) o1 (6)  o1(0)
S N(0,1)

1.

Using Equation (4.22), we can create an asymptotic confidence interval by noting that:

P(\/ﬁ(é1 - o1)
0'1(6)
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where ®(x) is the CDF a normal distribution with zero mean and unit variance.
Then

n(6, - 6! . 0) - 0
P(—\/_( - 1) € (_Zla/2721a/2)) ZP(QI € (el_zla/2—01( ! 61+Z17a/20-1( 1)))
0'1(91)

4.1.2 Asymptotic tests
Wald test

The Wald test is derived directly from the asymptotic distribution of the MLE. Under the
null hypothesis 8t = 0, the test statistic:

V(B = 60) S N (0,Z(80)™)
SO
”(én - QO)TI(HO)(én ~ o) ~ XQ(P)
This follows from the simple fact that if a random vector in R, Z, is distributed multivariate

normal, or Z ~ N(0,%), then 7127 ~ N(0,1), so ZTE- 125127 = ', X? where X; ~
N(0,1).

Rao’s score test

In our proof of the asymptotic distribution of the MLE, we used the fact that
1 & d
\/ﬁﬁ > (Volog fo(X:)) lgzgi = N(0,Z(67)).
i=1

This idea can be used to derive the Rao’s Score test, which uses the fact that under Hy: 0 €
©p, the gradient evaluated at the restricted MLE (i.e. the MLE restricted to the parameter
space Op) is nearly zero, and we can recover a similar limiting distribution. As above let
1
vn
Assuming that under the null distribution the restrited MLE 50 is consistent for 0t € O,
then

Vol (0) |p-pt= \/ﬁ% i(vabg fo(Xi)) lo-ot

%wﬁ(@) o-,> N (0.2(6"))

The Score test statistic is:

T - (%w(m |9=90) Z(00)" =4t (0)

This test statistic is distribution x?(p) under H,.
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Likelihood ratio test

The LRT comes from a two-term asymptotic expansion of the log-likelihood, as opposed to

the one term expansion:
R R 1 . .
~U(00) = ~£(0) = Vol(0) |y (0 = o) = 5(0 - 00)"V50(0) lg—g (60— o)
A 1 -~ N
0(0) - £(0o) = —5(9 —00)"V5L(0) g (0 - 0p)

_ %(\/ﬁ(é - 90))Tm(ﬁ(é - o))

As before,
V(0= 00) > N'(0,Z(60) ™)
and
20(0 _
_VG ( )|9:9 —p>Z(90)
n
SO

2(£(0) - £(69)) > \2(p)
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For all of the prior example, a convenient estimator for the Fisher information is the
average of the observed information. The observed information is just the negative of the

matrix of second derivatives of the log-likelihood:

82916(9) 39?;925(9) 89139p€(0)
-v3l(0) = 8928916(9) 829 5(9) 89269 0,09, L (0) (4.29)
aepael 6(9) 89p692 E(Q) ae,,ae,, 6(0)

This is often denoted as
i(0) = -vil(9).

Replacing £(0) = ¥, log fo(X;) and using the fact that derivatives are linear operators:

2-log fo(Xi) i log fo(X0) ... BGBW log fo(X;)
52 9?2 9?2
| X; | X; R e | X;
2(9) — _Z 002001 O:g f@( ) 0204 Og:fe( ) . 00200, O:g fe( ) (430>
_89?(2901 log fG(Xl) 39%92 log fG(Xz) cee —aafga,, log fg(Xi)_

we can see that the natural estimator of Z(6) is the average observed information, which

does indeed converge in probability to the Fisher information
1. P
—i(0) > Z(0).
n

Of course, typically we won’t know 6 (unless we're evaluating i(6) at 6p), so we use the

plug-in estimator, or z(én) which still converges in probability to the Fisher information:

%i(én) 5 1(0).

4.1.3 Tests in terms of observed information

When we use observed information in place of the Fisher information, the Wald and Score
tests look a bit different:

Wald test with the observed information

A 1 A A A A A asympt.
n(@n - QO)T;Z(QW)(HH - 90) = (Qn - HO)T'L(@n)(Qn - 90) prt XQ(p)
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Score test with the observed information

T~ (90O o) G =9t ®)

= (%V@K(Q) |9é0) ”(i(éo))_lﬁwf(e) lo-6,

= (Vol(6) lyes,) " 1(00) " Val(0) l,g,

4.1.4 Composite tests

This section is an expansion of Appendix B in Klein, Moeschberger, et al. 2003.

We can modify all of our tests to accommodate testing a subset of the parameters.
Typically we’ll have a subset of our parameter vector, let’s call it ¢, that we're interested in,
and we have another subset, ¢, that are nuisance parameters. In the Example 4.0.1, we’ll
likely be interested in testing if 5 # 0, and thus we won’t care about testing .

Let’s let 6 = (¢, ¢), and let 6 e R? so ¢ e R* k < p, ¢ € RP~%. Our null hypothesis will be:

Ho 9 =o.

Let ¢ (1) be the MLE for the nuisance parameter with 1 fixed under the null hypothesis.

We’ll also partition the information matrix into a 2 by 2 block matrix:

E[-v2log fo(X1)] E[-V2,log fe(Xl)]] i [Iw,w IW#]
E[-V2 log fo(X1)] E[-V3log fo(X)] | |Z8, Zos

The inverse can also be partitioned into a 2 by 2 block matrix:

(¢, ) =

S B Y
The expression for Z¥¥ can be found from the block matrix inversion formula:
W _ -1 -1 T 71 lor 711
IV =T + T Ty o (oo — 10 o To b Toe) L) 4T5L (4.31)
_ -1
= (Zpw ~ Ty T, 015 ) (4.32)

All of these results hold for the observed information, (1), ¢).

Composite Wald test

Again using normal distribution theory, we can derive the Wald test with the observed

information:

V(= 9) S N(0,T%).
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The Wald test statistic is then:
~ 1, ~
Tw = V/n(thn = 1bo)" (Iw’w) (n = o)1

Using the appropriate transformation for the observed information in place of the Fisher

information, we get
- N1, d
Ty = (o =100)" (1%") " (Y =0) > Xt (4.33)

Composite Score test

The composite score test is a bit more complicated. The joint asymptotic distribution of the

0 [Iw,w Iw])
Tjo oo

But when we have a nuisance parameter, under the null distribution we solve the score

score 1S:

1
\/ﬁng’qﬁ)g(w’ ?) |¢=1ﬁ07¢=<5oi N (

equations
Vsl(1o,¢) = 0.

This means the distribution for \/ntV,0(1, ¢) | oo 6=d(wo) 1€€dS to condition on the score

equations for ¢ being zero.
1 d 1
VIVl (0) gy gty = N (0. Zow = Tu6T56T6)-
The test statistic is then
_1/2 177 7L, -1/2
WV GO) |ymgo giivn) (Tows = TooTo6Ty) 1 PVul(0) Ly omdiun)

as we showed in Equation (4.32), the inverse matrix is the same as Z%¥, so, subbing in our

observed information matrix again, we get the final

TS = V¢€(9) |¢:¢07¢:¢;(¢0) Z‘(w(b &(wo))w’wvw£(9> |1/1:¢0,¢=<£J(’¢10)

which is asymptotically distributed as x3.

Composite likelihood ratio test

The composite likelihood ratio test is similar to the likelihood ratio test:

Tpr = 2(0(1, ) = £(¢o, (10)))
and this is again asymptotically distributed as 3
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Example 4.1.1. Continued relative risk example Suppose we are interested in testing the
hypothesis Hy: 5=0vs H,: 5 #0.
Recall the definitions of rq, 1o, T, T5:

r = zn:(l—zz)(i T1 = Zn:(l—zz)tz
i=1 =1

n n
9 = ZZZ& TQ = Z Ziti
i=1 i=1

We showed in Example 4.0.1 that the log-likelihood was:

((N,B) = (11 +72) log A = NT} + 798 = Xe’ T (4.34)
The score equations are
0 T + 79 38
a)\g()UB) A Tl € T2

0
%g()\,ﬁ) T — >\€BT2

and the matrix of second derivatives of the log-likelihood with respect to A, 3, also known

as the observed information, is

T1+72 eBTQ
V2 (N B) =] 4.35
2O 0) LBTZ o (4.35)
The unrestricted MLE, (i.e. the MLE under the alternative hypothesis), is:
A=t
Ty
9 ro 11
ef=——
Ty rq
Under the null hypothesis that g =0, we have the restricted likelihood:
LN, 5=0)=(r1+ry)log A= AT} = \Ty (4.36)
which can be differentiated with respect to A, set to zero, and solved for A:
ho= L2 (4.37)

- T1 + T2
The inverse of the observed information evaluated at the unrestricted MLE was shown to be

1+ 79

(4.38)

rre
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The inverse of the observed information is:

1
(r1+7r2)eP T, 2
% — €2BT2

7Y\, B) =

)\eﬁTz —6”8T2j|

T,

which when the 2,2 element is evaluated at the 5\0, or

(Tl + T2)2

T (Mo, 0)gp = —1 22
( 0 )2’2 (T1+T‘2)T1T2

Now for the test statistics:

e Likelihood ratio test: After some algebra, we get

Trr=2r (log(%) —log(g 1232)) + 21y (log(%) —log(

e Wald test: The test statistic is:

2
7’2/T2) rire

Tw=|! .
W (Ogrl/Tl T + 7o

e Score test The starting test statistic is:

T2 )2 (T1 +T2)2

Ty = (ry - .
o (TQ (Tl * TQ) Tl + TQ (T’l + TQ)TlTQ

N + 7o
T1 +T2

)

This is sort of interesting because it looks a bit like the log-rank statistic!

(4.39)

1S a

Th+T>

bit like the proportion of time at risk the second group experienced, and the expected

total failures in the second group is this proportion multiplied by the total failures in

both groups. It’s not too hard to see why you might want to reject the null that g =0

if this statistic were large. This simplifies to

_ (T17“2 - T27”1)2

Tg = )
o (Tl + T’Q)TlTQ

For an observed dataset of r; = 10,15 = 12,717 = 25,T5 = 27, they all yield values around 0.06,

which is far below the critical value of 3.84, which is the 95" quantile from a x3.
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4.2 More on parametric regression models

Information is from Collett 1994, Harrell et al. 2001, O. O. Aalen 1988, O. Aalen et al. 2008.

4.3 Weibull regression

A common parametric proportional hazards model is the Weibull, which we encountered

way back in lecture 2. The baseline hazard has functional form:
Aot | e, y) = yat*™h.
so the full regression model has the form

it | oy, B) = vat®exp(z] B),

with survival function:
S(t) = exp(—t* exp(z] B))

The interesting thing about the Weibull is that it isn’t just a parametric model for survival
time; it can be justified using extreme value theory as the minimum of iid nonnegative

random variables. Aalen writes in O. O. Aalen 1988:

Hence, if cancer may result from one of the first cells to undergo malignant
transformation, then the time to appearance of cancer might very well follow a
Weibull distribution, when lime is measured from an appropriate point. This
principle has more general validity. An individual is subject to the risk of several
different causes of death and the one which first causes fatality determines the
life time. Hence the life time might be supposed to follow an extreme distribution

for each individual.

Model fit check
For any survival model the following identity holds:
ST(S(t)) =t.

Thus an effective model check is to use a nonparametric estimate of the survival function,
either gKM(t) or S’NA(t), apply the parametric form of S;! to the nomnparamtetric survival
function estimate, and to plot this function against ¢. The graph should be roughly linear

n t.
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Example 4.3.1. Weibull model check Assuming X; ~ Weibull(~, @), the survival function

S(t) = exp(=t%).

The inverse function is found as follows:

p = exp(-t*)
—logp = t*
—logp o
(—=)Vr =t

Then we can check the following plot: Under noninformative sampling with observed data

(t;,d;),i=1,...,n, SKM(t) = [T« (1 - %) is the nonparametric estimator of the survival

function. a plot of
~log SKM(¢
(2108 yyjay o4
Y
should be roughly linear.
Another implication in the Weibull distribution case case is the following:
S(t) = exp(—t*) = log(-logp) =log(vy) + alog(t).

This leads to an alternative way to do a model check:

log(~1log S¥M(¢))v.s. log(t)

should be roughly linear with slope «.

4.3.1 Parametric proportional hazards models

Recall our definition of proportional hazards employing an exponential function with z; € R¥:
At | z:) = Xo(t | 0) exp(B” ) (4.40)
This implies the following properties for our model:

log M(t | z;) =log X\o(t | 0) + B z; (4.41)
log A(t | z;) = log Ag(t | 0) + B z; (4.42)

This means that the predictors act linearly on the log scale for both the hazard ratio and

the cumulative hazard, and that the effect of the predictors is constant over time.
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The interpretation of coefficients is as the change in the log hazard, or log cumulative

hazard:
6] = lOg)\(t | 21y %=1, %5 + 17'Zj+17 . ..Zk) —lOg)\(t | 21y n Ry 2y Bty - - -Zk)-

Alternatively, we have

o = At 21,2501, 25+ 1, 2441, ..zk)'
At 21, 2521, 24y Zjnts - - - 21)
Increasing z; by 1 has the effect of increasing the hazard of an event by e%.

As discussed previously and shown in Figure 4.1, When we have a single categorical
predictor, we can assess the validity of proportional hazards by plotting the log(—1log) of
the KM estimate of survival within each subgroup, and determining if the lines are roughly
linear in logt and if they are parallel. If they are not parallel, but are straight, this may be

an indication that one could fit separate the groups with separate shape, or «, parameters.

4.3.2 Testing for proportional hazards

Following Collett 1994, in the Weibull model we may test the proportional hazards assump-
tion by fitting a more flexible model and using a composite likelihood ratio test. Suppose
we have patients categorized into 3 age groups, and we use dummy coding for our design

matrix:

Group Predictors
Youngest group z; = (0,0)7
Middle group z; = (1,0)"
Oldest group z; = (0,1)

and we want to test whether fitting the following proportional hazards Weibull regression

model:
X; ~ Weibull(ye? % | o)

is sufficient. An alternative model that allows for hazards that are not proportional is
X~ Weibull(veﬁTzi, aeeTzi)

Note that this alternative model is equivalent to fitting separate Weibull models to each
group. Then the null hypothesis we’d like to test is whether 8; = 8, = 0. We can use the
composite likelihood ratio test to determine whether the data contradict this null hypothesis.

The test statistic would be distributed as x3 given the constraints in the null hypothesis.
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The test statistic in the case where we fit separate models to each subgroup is

2(51(1/;1, <131) + 52(1&2, </32) + 53(@37 <53) — (%o, Qg(wo)))

where ﬁj(qﬂj,éj),j = 1,2,3 is the log-likelihood from the fitted Weibull model to each age
group.

4.3.3 Accelerated failure time formulation

There is an alternative way to specify the Weibull model, wherein we model the log of the

survival times as being a linear function of covariates.
log(X;) = p+2zn+oe
Let ¢; be Gumbel distributed with a probability density function
f(€) = exp(e - €)
If we let v = e, then we can compute the density over v. e(v) =log(v). f(v) = f(e(v))Le(v)
exp(log(v) — €8 [y = ¢ (4.43)
This shows that e€ ~ Exponential(1). Now we can write the survival function of Xj:

S(t) = P(X;>t)
= P(log(X;) > log(?))
= P(p+2z]n+ o€ >log(t))
= P(e&i > (log(t) — pp~z{m)/o)
= P(e > exp(log(t) — pu -z )'/7)
= exp (—exp(log(t) — p—2!n)"")
- exp (=171 exp(a! (-n/0))
So we can see the following correspondences between our parameters for the log-linear model

and the original proportional hazards model:

1
a=—

g
v = e Mo
B=-nlo

In general, the correspondence between the model for the log-failure time and the pro-
portional hazards will not hold, but it does in the Weibull model.
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4.4 AFT models

This information is from Chapter 12 in Klein, Moeschberger, et al. 2003. Generally, AFT

models are specified by modeling the survival function as follows:

S(t]z) = So(texp(6'z))
= P(X; >texp(6”2))
Xi
= P(—T > t)
exp(0- z)

where Sy is the survival function for an individual with z = 0. Thus, we take a population
model for S, Sy, and for an individual with covariates z, and exp(8”z) > 1, survival time
is shrunk towards zero. We might also say that for an individual with exp(OTz), their
probability of survival at time t is as if they were an individual with a survival function
evaluated at ty = texp(8”z). Recall that the survival function and the hazard function are

related via the following equation:

S 1os(S(1)) = A1),

Note that when S(t) = S(g(t)) for a known differentiable function g(t¢), the following will
hold:

—%log S(g(t)) =- (829 log(S(g))) lg=g(t) %g(t) - —%logS(g(t)) - )\(g(t))%g(t)
(4.44)

When we use an AFT model for X;, this implies the following about the hazard rate, using
the result in Equation (4.44):

—% log S(t|z) = exp(OTZ)Ao(t eXP(HTZ)) (4.45)

Of course, sometimes this corresponds to a proportional hazards model, as in the Weibull
case, but most times it does not.

This formulation allows us to write log(X;) as a linear model:
log(X;) = p+z!n+oe.

Note that —@ = 1. The distribution of ¢; is a modeling choice. We saw that the extreme
value distribution is equivalent to the Weibull proportional hazards regression. Any dis-
tribution over R will work, though common choices are normally distributed ¢;, leading to

X, ~ LogNormal, and log-logistic distributed ¢;.
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The log-logistic model uses the following density for ¢;:

6$
. = 4.46
)= ey (1.46)
which leads to survival function of:
1

S(t) = 4.47

(t) 14+ A\t ( )

A(t) = -log(S(t)) (4.48)

=log(1 + At%) (4.49)

The log-logistic model has the unique property that the odds of survival for an individual at

time t are proportional to the odds of survival for the base population:

S(t|z So(t
1- fS‘(|t |)z) = exp(8'2); —(iS(*o()t)
where 3 = —vy0o.
Of course, we can’t just fit these models to the log of the observed failure times because
we have censoring. Thus we’ll need to do numerical maximum likelihood as we did for other

survival models.

4.4.1 Model checking in AFT models

The relationships that held for the Weibull regressions can be ported to other AFT models.
Klein, Moeschberger, et al. 2003 suggest checking a function of the cumulative hazard against
a function of ¢ to assess adequacy of model fit. We can use the (tie-corrected) Nelson-Aalen

estimator of the cumulative hazard function:

and examine transformations thereof against appropriate transformations of ¢.
For the log-logistic model, A(t) =log(1 + At®). This implies that

log(exp(ANA(t)) = 1) ~ log A + alogt

We can compute similar expressions for the Weibull and the log-normal model.

4.4.2 Cox-Snell residuals

Recall from Section 1.7 that the following relationship holds: When X; ~ F' with cumulative
hazard function A(t)
A(X,) ~ Bxp(1).
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We can use this idea to generate graphical checks for our models.
Continuing with the log-logistic model, we could graphically assess whether the following

Cox-Snell residual, denoted r¢:
r¢ =log(1 + eZiTéS\tf‘)

is exponentially distributed with unit rate. The issue with plotting these residuals directly
against the quantiles of an exponential distribution is that for the censored observations,
A(C;) won’t be exponentially distributed. But we can use the properties of the cumulative
hazard function to our advantage, namely that it is nondecreasing in ¢. Thus for censored
observations where t; = ¢;, this implies that x; > ¢;. Thus, A(#;) < A(x;), so we can say that
when §; = 0, A(z;) is censored at A(t;).

The solution is to use the Kaplan-Meier estimator again! We can form the censored

cumulative hazard sample:

{(#; = min(A(z),A(c;), 6 =1 (25 <¢)),i=1,...,n} = (4.50)
{(ti=A(t;),6;=1(v;<¢)),i=1,...,n} (4.51)

where the second line follows from the nondecreasing characteristic of A(t).
Then we can fit the Kaplan Meier estimator to the dataset (#;,d;) observations to infer

the non-censored distribution of A(x;). The procedure is as outlined below:
1. Fit a parametric survival model to {(¢;,0;,2;),i=1,...,n}

2. Calculate the Cox-Snell residuals using the estimated survival model: {(Z; = A(t;),8; =
1(z;<¢)),i=1,...,n}

3. Fit a Kaplan-Meier estimator to the datatset Equation (4.50)

4. Plot the log(-log(S¥M(t))) vs. logt to see whether a line with zero intercept and

slope 1 fits in the confidence intervals
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4.4.3 Influence of data points in likelihood equations

The material in this section is from Collett 1994, Cain and Lange 1984, and Broderick et
al. 2023. Like in linear regression, we’d like to determine if some of our data points are
influencing our conclusions; armed with this information, perhaps we can expand the model
to incorporate these outliers, or perhaps there is a data processing error that we can rectify
and re-run our analysis.

One idea is to determine whether omitting one data point appreciably changes our esti-
mate of our parameter of interest. The simplest way to do this is to refit the data n-times,
where each time we omit one data point. For small datasets, this is reasonable, but when
we have large n, or a very complex model, it may be infeasible to refit the model n times.

Instead, we can cleverly use Taylor expansions to approximate the effect of small pertur-
bations in the data on the estimated coefficient. If these small perturbations induce large
changes in our estimated coefficients, then it stands to reason that the datapoints that have
been perturbed are influential to our estimates.

Let’s make things more concrete. Suppose we have a model with a parameter vector,
0 € R*, and a maximum likelihood estimate thereof 6. We'd like to understand how 6 changes
if we drop one datapoint. Let the index of this datapoint be j. We can formalize the idea of
dropping a datapoint by examining the score equations. Recall our typical problem setup:
We have n observations, each of which is a triplet of the time to failure or the time to
censoring, t;, an indicator d; that ¢; is the time to failure, and z; € R¥, the covariate vector

associated with each unit. Let our likelihood for each observation be fq(t;,0;,2;) Let

g(e) = anlog f@(tiy (57;, Zi)-

i=1

The score equations are defined as usual:
Vol (0) = Z Velog fo(ti, 0i,2) (4.52)
i=1

and @ is the solution to the set of equations Vg/(6) lo_o=0
We can introduce the variables w; into the equation above, as well as the collection of

the w; into the vector w:
Vol(8,w) = > w;Vglog fo(t;,0;,2;) (4.53)
i1
The vector 8(w) solves the equations

Zwivg log f@(ti76i7zi) |0=9(w): 0 (454)

i=1
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Note that our original MLE, 0= 9(1) Deleting the j' datapoint amounts to setting w; = 0.
Then the idea is to approximate 9(w) near the vector 1. For the m'™ element of 9(W),
O(W),n, this is:

0
w;

O(w),, ~ (1), + é(wi 1) (a é(w)m)’ (4.55)

w=1

When all but one of these w; is equal to 1, namely w; = 0, let

w() = (174,0,15 )"
Then we get
0wy =01~ (o0, o
ow, ot
Thus for the whole vector é(w(j)) we get, as in Cain and Lange 1984,
O(w(;)~0(1) - (ié(w)) (4.57)
ow, et
where
() = ()1 500

The question remains how to calculate a%j@(w) evaluated at w = 17
Let the vector U(@,w) be defined as

n
u(e,w) = ZwNelog fo(ti, 0i,2;).
i=1
Note that the score equations are a function of the parameter vector and the vector of

weights. The MLE given a set of weights w, é(w) solves the system of equations:
U(6(w),w) =0.

Then the implicit function theorem (more detail here?) allows us to differentiate the expres-
sion above with respect to w; and solve for the derivative of interest, %é(w).
J

Recalling the chain rule for multivariate functions: Let v(z(t),y(t)) and calculate Zv(z(t),y(t)):

0 ov(z, oz (u ov(x, y(u
D o) - D) W), 0(x,9) ()
ot Oz z=x(t),y=y(t) ou u=t ay z=x(t),y=y(t) u u=t
We can differentiate the expression for the score function:
iU(é(w),w) _ iO . 3U(0,TW) 0(w) . U0, w) _0
ow; ow, 00 0=6(1)w=1 Ow; | _, Jw, 0-6(1) w1
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Assuming that
ou(e,w)

00" lo-o(1)w-1
is invertible, which is equivalent to requiring that the observed information matrix evaluated
at the MLE with the complete data be invertible, we can solve the equation for the quantity

of interest, %é(w) evaluated at w = 1.
J

o(w)

8wj

)‘1 U(6,w)
6=6(1),w=1 Ow,

~ (_ ou(e,w)
el 00"

0=0(1),w=1

u(e,w)

Now we need to evaluate —- R )
Wi 19=0(1),w=1

) o (5
2 u(e - i | ti75ia %
» (0, w) o (Z;w Volog fo(ti,0; 2 ))
= Volog fo(t;, 9;,2;)
SO
Uuo,w
% = Vg log fe(tjadjazj)b:é(l%“’:l'
Wi lg=o(1),w=1

Finally, we get the general equation for the sensitivity of the MLE to the deletion of the jth
data point:

ou(6,w)

g7 Volog fo(t,05,2i)lg_o(1) wer (4.58)

-1
0_9(1),w_1)

This makes a good bit of sense; if the gradient of the log-likelihood function at a point lies

B(1) - B(wiy) ~ (

along a direction of large uncertainty, this datapoint will have a large influence on the MLE.
The expression in Equation (4.58) also makes sense when viewed through the lens of the
limiting distribution for the MLE. Note that

~ou(6,w)

00T = —Vzg(g) |0:9(1)

0=0(1),w=1
Recall that from a previous lecture we have that a Taylor expansion for Vel(0)|,_s

V(O(L) - 8') = (- -T30) loacs) ) —=T0l(0) lo

Using the Taylor expansion formula with remainders yields

V(O(L) - 8') = (- T30) lor ) Z=T61(0) oo +0,(1)
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The plug-in estimator for the right-hand side at 8% = 8(1) yields:

Vn(6(1) -6") = (—%VZE(B) |e—é(1))_ —=Vol(0) |g_p(1) +0p(1)

Q‘

1 n
= (_ﬁvzg(g) |0:é(1)) Z Og fO(tw(SuZz)) |0 a(1) +0p(1)
i=1

Dividing each side by /n yields
é(l) -0 = ( Vol (0) lo- 9(1)) ZVO log(fo(ti,0i,2:)) |- 6(1) +0,(1/v/n)

Thus, asymptotically, each observation (¢;,d;,2;) perturbs the deviation between the MLE

and the true value by approximately:
-1
(—V%E(O) |9=9(1)) Vo log(fo(ti,0i:2:)) lg_(1) -

Linear regression

In the case of the linear regression model with normally distributed errors and known vari-

ance, we have the following results:

log fo(t;:0,2)|p-a(1ywe1 = Zi(¥i — B2Z:)

and
-1

(_ ou(6,w) _ _(ZTZ)—l‘

00" e_é(l),w_l)

Assuming that Z is full column rank, we can decompose the variance covariance matrix as:

-(2'2)"' = -QAQ"

where Q is a matrix with the orthonormal eigenvectors of Z7Z as columns. Thus the influence
of the j* datapoint is

-QAQ"zi(yi - Bz).
If z; lies in a direction of large uncertainty for the variance-covariance matrix (i.e. the vector

is aligned with the eigenvector associated with a large eigenvalue), and there is a large fitted

residual, the datapoint will have a lot of influence on at least one of the coefficients.
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Another thing to note is that if the information matrix is block diagonal, then the gradi-
ents corresponding to one parameter block can’t influence the MLE of the opposing param-
eter block.

For notational ease:

A, =6(1) - O(w;).

Collett 1994, citing Hall et al. 1982, suggests standardizing the sensitivity to the control

for the inverse of the variance-covariance of the estimated 6, namely:

(28,)7i(6)(A6;).
Recall that U6, w)
LA , W
1(0) = - T AAT .
00 0-0(1),w=1

This leads to the tidy expression:

ou(e,w)
00"

-1
T
Ve 10gf0(tj’51721)\929(1),w=1(‘ »ot) _1) Veolog fo(t;,0;,2;)lg_6(1)w-1

Alternatively, we can use the sandwich estimator for the asymptotic variance covariance
matrix, which is defined in Equation (4.27) as:

-1
1o . 1 0U(8, w)
0nd( D 1) ( > (Velogfe(ti,5i,zi) (Volog fo(ti,di,2:)) )‘e_éu)) (— — T

G (_1 U8, w)
n i3 n 00"

-1
n 00™ 9—9(1),w—1)

Note that this is variance/covariance matrix for \/ﬁ(én -0"). We instead want to get a sense
for the variance/covariance matrix for én, so we divide the expression by /n, leading to a

variance estimate that is scaled by n=!. Using the statistic
(A8,)T(n12R)H(AB;)
and noting the following equality:

(150" - (_ dU(8,w) aU(8,w)

007 007

9=é(1),w=1)

n -1
Vo log fg(t],éj,zj |(9 ~0(1),w=-1 (Z (V@ log fg(ti,&,zi) (V@ log fe(ti,(si’zi))T)‘ezé(l)) Vo log fe(tj75j7zj)|9:9(1),w:1 .

n -1
Z Velogfe tzyézyzz) (Velogfe(fzﬁuzz)) P ) (_
6=6(1),w= 1) ( ( )|0:0(1)

i=1

yields:

Let’s do an example where we can analytically calculate the influence score for a single

observation on the parameter vector:
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Example 4.4.1. Influence of datapoints in exponential regression model The inverse of the
observed information is:

1

BT A
(T1+7‘25\)6 2 _ 626T22

(A ) =

(4.59)

S\GBTQ —€BT2
o1,

which simplifies to:
Lo _ L
T2 T
[ i ! ] (4.60)

and the score equations are:

0 0
— = = - e"ift; 4.61
SO B) = S ety (461)
which we evaluate at the MLE:
~ ’r‘l
A= —
T
gl
T2 T1
to yield
0 (51T1 T2 T1 )Zi
— (A = -|=—1 t 4.63
SO = (2 (463
0 T2
S5O == () (4.64)
For an individual with z; = 0, this gives the sensitivities:
éi—ti% 61’*@,’%
T 1 r1

These expressions make sense. At a mathematical level, they agree with the total derivatives

T1

for each function: 7 and —log(r /T1). Our expression for the sensitivity of the MLE to the
omission of one datapoint is in terms of the difference between the MLE of the full model

and the MLE of the leave-one-observation-out model:
9(1) - G(W(j))
This means that the change in total time at risk for a group j = 1,2, or Tj, is positive, as is
the change in total failures for each group:
Ti = (T =t (4.66)
ri = (1)@ = i (4.67)
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Then the expression the

1 0 r 0
d—=—-—d ——dT; 4.68
T1 87"1 T1 n 3T1 T1 ! ( )
d’l"l ™
=— —dT\— 4.
T ‘T2 (4.69)
0; — ti%
o T 4.
- (4.70
and
0 0
d-log(r/T1) = —=—log(r1/T1)dr; — —log(ry/T1)dT} (4.71)
(97’1 8T1
dT1 d?"l
- _ - 4.72
o (4.72)
tigr — 05
n—1L 4.73
- (1.73)

It helps to think about the units of the parameter estimates. A measures the rate of
failures per unit time, while § measures the log of the relative rates of failure. Thus  is
unitless. Remember that

0; — t-ﬁ

is the residual for an individual 7 in group j. It compares the observed failure to the expected
failure rate, which in the exponential model is just the estimated rate of failure times the
time at risk for 7, or ;. When one removes an individual from group 1 the estimate for the
rate of failure in group 1 declines by the residual expected failure per unit time. At the same
time, the log relative rate of failure must increase by the residual failure per unit failure
because the estimator for § is log(rs/T3) — log(S\). Thus any change in A has an opposite

change for .

For an individual with z; = 1, the sensitivities are:

0 0
5 ot | Tt % (4.74)
rg  Ta T2

Again, this makes sense; \ = 7, so omitting an individual in group 2 can’t change the

~

MLE for A. Finally, given 8 = log(r,/T3) - log()), omitting a datapoint will decrease the
failure rate estimate within group 2 by the residual scaled by the failure rate. Note the total

derivative of log(rs/T3), as above, is:

dr, dT:
dlog(rs/T5) = Ti; - T; (4.75)
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We can also calculate the scaled total deviation. For z; = 0 we have:

Lo - 5,)°
(te —6)° (4.76)
1

and for z; = 1 we have

(t:5 - )"

Ty

(4.77)
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4.5 Cox Proportional Hazards Model

The Cox proportional hazards model is one of the most widely-used statistical models. It
is a semiparametric model for the hazard ratio, which means we will avoid specifying a
parameteric form for the baseline, time-varying hazard rate, while specifying a parametric

model for the influence of covariates on the hazard rate:

Mt z) = \o(t) exp(z' B)

In the following section we’ll derive the likelihood for the model in a similar way to our
NPMLE derivation of the hazard rate.

4.5.1 Cox model likelihood derivation and the Breslow estimator

without ties

Suppose we have the standard survival-analysis triplet of observable random variables for

each unit ¢ under study:
{(ZTZ = min(XZ-, CZ),Al =1 (Xl < Cl) ,Zi),i = 1, Ce ,77,}

where X; is the absolutely continuous time to failure for unit ¢, C; is the absolutely contin-
uous time to censoring, and z; is a length-p vector of time-invariant covariates that we are
conditioning on.

As stated above, we assume that the hazard function for the distribution of X; is:

Ai(t) = Xo(t) exp(z] B)

and we’ll leave the function \g(¢) unspecified. As in Chapter 3, we’ll derive an estimator for
Ao(t) at the event times {¢;,i = 1,...,n}. Let A(t) be the right-continuous-with-left-hand-
limits (cadldg for short, in French) cumulative hazard function with mass points at ¢;. Note
that \(¢;) = A(t;) — A(t;—), and we define the integral
f F)dA(t) = S F(t)A(E).
B iltieB

This is a nonparametric estimator because as the data grow, so too does the dimension of
the parameter space. This is akin to the Theoretical note in Klein, Moeschberger, et al.
2003, and an exercise in O. O. Aalen 1988.

The joint likelihood for the model for set of observed data {(¢;,d;,2;),i=1,...,n}, which

is assumed to have no ties in event times, is:

L(Xo,B) = ﬁ ()\O(ti) eXp(ZiTﬁ))éi exp(- eXP(Zfﬁ) fgti Ao(u)du). (4.78)
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Recall the definition of Y;(u) from Chapter 3:
Yi(u)=1(t; >u).

The function is left continuous with a jump from 1 to 0 at ¢;. Then we can rewrite the model

as

L(.8) = T (M(t) exp(a! B)" exp(- exp(z! B) ;7 Y. () do(u)iu) (4.79)

3

- ({10 exvtal 8" esot- 5 St oG BH () (450

=1

3

(n (Mo(t) exp(z! B))’ )exp<—zy_1<z?_1exp<zfa>m<tj>>wj)) (4.81)

7

Let’s fix a value of 8 and compute the NPMLE for A\(t;). The log-likelihood for A is
0(Xo,B) =Y. bilog (Mo(t:) exp(z] B)) - Ty (Eiky exp(zl B)Yi(t5)) Ao(ty)
i=1
Differentiating with respect to Ao(%), provided d; =1, gives

0/\0@ ) " (t ) ;exp(ZTﬁ)Y(t )

We note that the second derivative with respect to Ag(%;) is strictly negative for all positive

( 0718)

Ao(t;) Setting this expression equal to zero and solving for Ag (tj) will give the unique NPMLE
1
Yitiexp(z B)Yi(t;)
The denominator can be simplified if we define the set R(¢;) : {¢ | Yi(¢;) = 1,i = 1,...,n}.

This is called the risk set at time ¢;.

ho(t;) = (4.82)

1
ZieR(t]-) exp(ziTB)
Let’s substitute this NPMLE into the likelihood in Equation (4.78). Recognize that by

definition of §; and A\(¢;) only jumping at event-of-interest times, the estimator is equiva-

Aolty) = (4.83)

lently defined as
0;
(4.84
Yier(t,) €xp(z; B) )
Subbing this back into Equation (4.81) gives

[ exp(z! 3) " ox (_ = '(Z?ﬂeXP(ZiTﬁ)Yz‘(tj)))
L(B)_(H(ZjeR(ti)eXP(ngﬁ)) ) g J;(SJ Yier(t;) eXp(2] B) 5

:(ﬁ(z exp(z!B) )6i)exp(_i5j) (4.86)

jeR(t;) exp(z?ﬁ)

Ao(t) =




Then we get the final term for the Cox model partial likelihood:

(o))
LB =11 (ZjeR(ti) exp(z;] B)

(4.87)

i=1

_ ( H exp(ZZT,B) ) (4.88)

i6;=1 ZjER(ti) eXP(Z?ﬁ)
where we note that maximizing Equation (4.87) will maximize Equation (4.86).

Let B be the MLE of the expression L(3). Then the estimator for the cumulative hazard

is defined as:
1

Ao(t) = >

- (4.89)
tildi=1,ti<t ZjeR(ti) eXp(erﬁ)

This is known as the Breslow estimator for the cumulative hazard.

4.5.2 Alternative view of the Cox model

The final form of the partial likelihood for the Cox model is:

L(B) o< ( [1 exp(z; ) ) (4.90)

i6;=1 ZjeR(t,-) eXp(ZJTﬁ)

If we multiply top and bottom by Ao(#;) (essentially we’ll be multiplying by 1 a bunch of

times), we get:

il8;=1 szR(ti) Ao(t:) exp(zjrﬁ)

If we write out the hazard function explicitly we get the following probability distribution:

L(ﬂ)oc(]‘[ Mo(ti) exp(z; B) ) (4.91)

L(B) o< (“gl ¥ jer(ts) liMago P(t; < X;<t;+dt| X; > t;)
Under the assumption of independent event times, we can interpret this probability function
as the probability the it participant surviving to time ¢; and failing just after ¢; conditional
on exactly 1 death occurring just after time t; among those surviving to time ¢;. Finally,

under noninformative censoring, and noting that this is

L o<
(B) (ﬂgl i limgo Pt < X <ty +dt | X; > t;,C; > 1)
Where the sum in the denominator follows because if C; < t; or X; < t;, then P(t; < X <
ti-i-dt'Xj Zti,CZ' Zti) =0.

The no ties assumption is not problematic with absolutely continuous data. In practice
there will be ties in the data.
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Data with ties

The simplest approximation when there are ties in the data is to consider the times at which
the ties occurred to be distinct, but mismeasured. We define {7;,j =1,...r = ¥;J;} to be
the distinct times at which failures occur. We can expand the dataset with

{(rj,dj= "3 Gisj= Y z),j=1,....r}.

Z|t =Tj 7f|ti:7—j

We still need access to the risk set function R(t) = ¥, Y;(¢) and z;. The partial likelihood

can be written in terms of the new dataset:

L(B) o H(Z exp(z, ) )& (4.94)

jer(t) €xp(z] B)
) i) ) 4.95
Jl'_{ﬂtli_—[Tj(ZkER(t)exp(zk B) (4.95)

exp(s79)
1] P _ (4.96)

51 (Zerry) exp(z] B))

This is not quite right because we’ve ignored the fact that when failure time is continuous,
all true failure times are ordered in time. Let 7; be a time interval in which several units
failed, and let the set of units that fail at 7; be D(7), defined as:

D(rj)={i|ti=7j,i=1,...,n}.

The proper way to handle ties would be to integrate over all possible permutations of failure

times.

Exact handling of ties This section follows Kalbfleisch and Prentice 2002. Let the indices
of the set of units failing at time 7; be {1,...,d;}. Let @; be the set of permutations of
D(7;) and let P = (py,...,pq;) be an element of this permutation. Finally, let the extended
at risk set be R(7;, P,m) = R(7;) ~ {p1,...,pm-1} where we let py be the empty set. For a

single term in the likelihood at time 7;, we need to integrate the term

exp(z; B)
i|6;=1,t;=T; ZkeR(TJ)eXp(Zkﬁ)

(4.97)

over all permutations of D(7;). We have no extra information to weight the orderings, so

we give them all equal weight as $ This integral is

xp(siB) « 4 1
d;! PeQ; m=1 ZkeR(TJ,Pm) exp(zk B)

(4.98)
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Not surprisingly, this calculation is prohibitively computationally intensive. The part that
is computationally intensive is the sum. If we note that we have d;! terms in the sum, we
can approximate the sum by Efron’s approximation:
d;!
d;j—1 m
10 (Skerey) 5D(ZLB) 2 Shepiey) exp(2L3))

(4.99)

The intuition for this method is that you approximate the decrement in the risk set by the

average of the relative risk of failure of the failed units at time 7;.

4.5.3 Interpretation of the Cox regression model

The key idea for the Cox regression model is that we can maximize the partial likelihood
without worrying about specifying any form for the baseline hazard rate Ao(t). Informally,
this allows us to use standard asymptotic tests and confidence intervals for 8 without wor-
rying about the infinite dimensional (i.e. unknown function) baseline hazard rate. Thus we
can use all the asymptotic likelihood techniques we developed for parametric models for the

Cox model.
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4.5.4 Score function of the Cox model

Given that we’ll use maximum likelihood to fit the Cox model, the score equations for the Cox
model will be of importance to us. As shown in the previous section, the partial likelihood

1s:

(4.100)

exp(z! B) )5"
jert;) €xp(z] B)

PL(B) -] (z

i=1
The log-partial likelihood is thus
log PL(B) =) 6:|z/ B-log| > exp(z]PB) (4.101)
i=1 jeR(t:)
The gradient of this function with respect to the parameter vector 3 is
) n Y jert:) % €xp(z] B)
7108 PL(B) = ) 0; (Zi - - ’
B ; Y jer(t) exp(z] B)

This can be seen to be the difference between the covariate value for individual 7 who fails

(4.102)

at time t; and the weighted average covariate value for individuals in the risk set at ¢;.

Example 4.5.1. Simple two-group Cox regression example Let’s assume that we observe
failure time data from two groups, 1 and 2, that contain no tied event times. The observed
data is {(t;,0;,2),i=1,...,n}. Each observation i is paired with a scalar value z; taking the

value 0 when i is in group 1, and 1 otherwise. The hazard model takes the form:

)\z(t) = /\Q(t) exp(ﬁzi).

with Ag(t) left unspecified.
The partial likelihood for (3 is

)

- exp(Bz;) &
1(srest) s

Equation (4.103) simplifies if we create an alternative dataset by generating {7; =t; | §; = 1},
and {(75,025),7=1,...7=Y;0;} the times of observed failures:

- exp(30;)
i1 Zker(r;) eXp(Bzr)

(4.104)

Let’s write out the log-likelihood and the score equation for 3:

255zj—ilog( > exp(ﬁzk)) (4.105)

=1 kGR(T]‘)
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This can again be simplified if we keep track of the number of individuals at risk in each
group. Let these variables be, as before, denoted Y(7;),Y2(7;). As a reminder, we define

these variables as:

Yi(7)) = Zn:(l—zl-)]l(tisz) (4.106)
Vo) = Y al (> 7)) (4.107)

Because z;, = 0 for all Y,(7;) we get

> B0 = Y- log (Yi(75) + Ya(r;)e?) (4.108)
j=1 i
One more simplification is that }_; 6o = Xi; d;2;, which we’ll call 73, or the total failures
in group 2.
rofB =Y log (Y1(7;) + Ya(7;)e?) (4.109)
j=1

Taking the gradient with respect to § gives:

72(73')66
1Y 1(75) + YQ(TJ)eﬁ

(4.110)

Setting this equation equal to zero leads to an equation we cannot explicitly solve in terms

of f:

=1 (4.111)

An alternative is to use the score test. Here is the benefit of the score test in examples
like these, where we don’t have to maximize the log-likelihood under the alternative in order
to test the hypothesis that the rates of failure are different between the two groups. Take a
look at Section 4.1 to remind yourself about what the score test entails.

Here is the score equation for

- Y(7;)e?
& (52”' Vi) E?)zvj)eﬁ) (4.112)

The second derivative of the log-likelihood with respect to (5 is

L Ya(1)Ya(ry)e”
J; YI(TJ)JFYQ(TJ)eﬁ)

(4.113)
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The score test statistic is formed by evaluating the score and the observed information at

B =0:

0 R Ys(7;)
95" lo0= 2, (5” Vi) +?2<Tj>)

82 B r ?1(73)72(7—]')
—6755(5) |5=0 = J; (Y1(75) + Ya(15))?

These are exactly the numerator and the denominator of the log-rank test statistic when

(4.114)

there are no ties present. Remember, the log-rank test, using data collected through time

point 7 is

Z;(7)
Var(Z;(7))

With expressions for numerator and denominator below:

Z(r)= S W) (dij —di?_j(ti))Var(Zj(T)) =S W(L) (d

i1t Y(t:) Y (k) Y (t:)

(4.115)

?ij(ti)
Y (t:)

In our case here, d; is always equal to 1 because we have no ties. With two groups 1- is

?1 (tz)

Y(t:)’
The duality between the Cox model and the log-rank test sheds some light as to the power

so the numerator and denominator simplify to equal the equations in Equation (4.114).

of the log-rank test. Namely, the log-rank test tends to be powerful against the alternative

proportional hazards hypotheses.

4.5.5 Model checking in the Cox model

We can use a lot of the same ideas we’ve used for parametric models for model checking in the
Cox model. Remember the Cox-Snell residuals we defined using the estimated cumulative
hazard function A, (#):

e; = Ni(t;) "R Exponential(1) (4.116)
We can also use this function to define what’s called a martingale residual:
6?4 = 52 - /A\Z(tl)

These residuals are much closer to the residuals in linear regression models in that they sum
to zero for any fitted model, and are zero in expectation in large samples and approximately
uncorrelated. Exercise: show that this is true for the Cox model. A downside of the mar-
tingale residuals is that we are required to estimate the cumulative hazard function, which

may not be of interest.
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Figure 4.3: Example plot of N;(t) =1(3<1)

Martingale residuals

We've defined ¢; as the indicator that the i*h participant has experienced a failure over the
course of the study. This is defined as ¢; = 1 (X; < C;) where C; is the time of censoring.
We can imagine defining this variable for every time point ¢ after the " participant enters
the study. Let N;(t) = 1(X; <t,X; <C;). This equals ¢; when ¢ equals the study end point.
On the event that X; < C;, N;(t) is a step-function of time, equalling 0 for all ¢ > X;, and
then jumping to 1 at ¢t + € for all € >0. A plot of this function is shown in Figure 4.3. This
variable can be seen to be a function of ¢, and is technically called a stochastic process. One
way to think about this is that N;(¢) is a random function of time. To see this note that for
every draw of X;, N;(¢) is a different step function, jumping up to 1 at X.

Of course, a natural quantity that arises from our definition is
E[N:(#)]=E[1(X;<t, X; <Cy)] = P(X; <t, X; <Cy).

Let G¢,(x) be the survival function of C;, or P(C; > x) evaluated at z, and let S, (xz) be the
survival function of X;. Writing down the expression for the expectation of N;(¢) in terms
of the hazard ratio for X;, \;(z), will show that the martingale residuals have mean zero:
We'll assume for ease of exposition that X; i C;. Remember that \;(z) = fx,(z)/Sx,(z-),
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and that we’ve defined T; = min(X;, C;). Let the density function for T; be fr.(y).
E[Ni(1)] = P(X; <t,X; <))
¢
= f Ge,(z-) fx, (z)dx

- [ Gate e @) s

[ Ge,(z-)Sx, (z —)SfX((x))
f P(Cy > 2, X; > 2)Mi(z)d

t

E[L(C; 2z, X;22)] \i(x)dx

t

E[1(T; > z)] \i(z)dx (T; = min(X;,C;))

fm Omﬂ(“f'f)ﬂ (y > ) fr,(y)dyi(x)dzx

foo 001 (t>2)1(y>2)N(z)dxfr,(y)dy (Fubini)

; 1(y > x) \i(x)dx fr,(y)dy

E[/;IL(T Zx))\(x)d:v]

It immediately follows that

S— 3

o

[en]
[en]

—

B[vo- [ (@)1 (T 2 2) -

Schoenfeld residuals
Instead, we can use the score equations above to generate residuals, called Schoenfeld
residuals. Let z;; be the k" component of the vector z;, and let
_ Yjeru) Znexp(z] B)
Y jer(t;) exp(z] B)

Qi =

e = 0i (zik = ir,) (4.117)

These give some sense of how much the 7" observation is contributing to the score equations
for g at the MLE for 3.
This residual highlights the conditional probability view of the Cox model. In this inter-
pretation, the ¢*® participant will be selected for failure at time ¢; with probability:
exp(z:8)
2 jeR(t) eXP(Z;"Fﬂ)

(4.118)
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This means, conditional on the set of observed values z;,j € R(%;), that z; is a random

variable with a mean:

T
() Z; exp(z;
E[z; | R(t;)] = Lieht s p(Tj %) (4.119)
Y jert) exp(z; B)
and variance:
niy 2zt exp(zt
Var (z; | R(t;)) = Zjen) 4% xp(2, ) ~E[z | R(t;)]? (4.120)

ZjeR(ti) eXP(Z?ﬁ)
Testing proportional hazards

This view also can be used to show that these residuals can be used to determine whether
the proportional hazards assumption is valid. For the rest of this section, for exposition
purposes, let’s assume we have one covariate, z;. Suppose we are worried that our data may

be generated by a model with a hazard ratio defined as

Ai(t) = Ao(t) exp(B2; + g(t)02;)

for some function g(t). If we write the true (unobservable) Schoenfeld residuals for this
model we get:

e/ =2 —Ep, [z | R(t;)]

)

where 5 (18)
jeR(t;) i CXP\Zi
B, [2i | R(t:)] = =2
0 Y jer(t) €xXp (i)
which we can expand with
ny Ziexp(Bz; +g(t)0z; ny Ziexp(Bz; +g(t)0z;

Y jer(t) €xXp(Bzi + g(t)02;) Y jert;) exp(Bzi + g(t)0z;)
Under this formulation
ry Zziexp(Bz + g(t)0z;
E|- Y jeR(t) p(Bz +g(t)02) R(t) | = 0
Y jer(t) exXp(Bzi + g(t)0z;)

by definition of the conditional expectation of z;. Let’s do a one-term Taylor expansion of

the true conditional mean under the alternative model about g(t) = 0:
Y jer(t) % exXp(B2i + g(t)02;) N Y jer(t:) %i exXp(B2;) N 0 Liert) Ziexp(Bzi +g(t)02)
Y jert:) exXp(Bzi + g(t)0z;) Yier) eXP(Bzi)  09(t) Xjerq,) exp(Bzi + g(t)0z:)
B Y jeR(t:) i exp(fzi)
B Y jeR(t:) exp(Bz;)
jeR(t;) 92,-2 exp(Bz; + g(t)02) _ (ZjeR(t,-) ziexp(Bz; + g(t)0z:))?
ZjeR(ti) exp(Bz; +g(t)02) (ZjeR(t,-) exp(Bz; +g(t)0z))?

=Ep, [z | R(t:)] + Vary, (=i | R(t:)) 09(t)

g9(t)

g(t)=0

+g(t) 2

g(t)=0
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Plugging this in above gives:

Yjene) % exp(Bzi + g(1)0z)
efmzi— Jelitti + Varg, (z; | R(t;)) 0g(t
S jenqen exP(Bz; + g(t)0z;) H, (2| R(t:)) 09(1)

Taking conditional expecations gives:

Elef | R(t:)] » Varg, (2| R(t:)) 09(1)
Using the plug-in estimator e for E[e} | R(t;)] gives that
ef ~ Varg, (i | R(t:)) 09(t)

under the alternative. Thus, plotting e against ¢ gives a sense for whether there is evidence
against the proportional hazards assumption.
Letting € = z; - Ep, [2; | R(;)] gives

Influence function for Cox PH model

Of course, we have a tool that will give another approximation of how much an individual
observation contributes to the score equations, the influence function we derived in Sec-

tion 4.4.3. To make this more precise, we’ll need to define the weighted score equations:

Y jer(t) 2jwj exp(z; B) )
2 jeR(t;) Wi exp(z?,@)

n
Vepl(B,w) = ) w;d; (Zi - (4.121)
i=1
The key thing to note is that the weight vector shows up in two places, because omitting
an observation omits the observation from the risk set, against which other observations are

measured. We can see this by rewriting the score equations for an observation indexed by k.
Y jeR(ty) ZjWj eXP(Z;‘Fﬁ) ) u (Z_ ~ Y jeR(t;) ZjWj eXP(Z;‘Fﬁ) )

+ wz5z
> jer(ty) Wi exp(z] B) zzil:c Y jer(i;) Wi exp(z] B)
(4.122)

Vapl(B,w) = wyly, (Zk -

Then we take the gradient of Equation (4.122) with respect to wy. Note that wy will show

up for all risk sets prior to and including t;. Then we can write the gradient as:
Y jeR(ty) ZjW; eXP(Z?B) ) s 0 (ZjeR(tk) Z;W; exp(ij,@))
— WOk
Y jeR(ty) Wi eXp(Z]T/B) wy, XjeR(t) Wi exp(z?ﬂ)
3, ( Y jer(t;) Ziw;j exp(z] B) )

0
a—wkvgpﬁ(ﬂ,W) = 0p (Zk -

- Z wlél

Yjerty) 2iW;j exp(z] B) 0 [ Zjer) ziw; exp(z; B)
= 5k‘ Zj — T - Z U}Z(S,L T
2 jeR(ty) Wi eXp(Zj B) ifts<ty, wy, 2 jer(t:) Wi eXp(Zj B)
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The gradient of the second term is

0 ( ZjeR(ti) ZjW; eXp(Z?I@) ) _ Zj eXP(Zzﬁ) (4 123)
Owy, 2 jeR(t;) W; eXP(ZJTB) 2 jeR(t;) Wi exp(z Tﬁ) .
exp(zk 3) Y jeRr(t:) ZiWj eXP(Z B) (4.124)

(X jere) wjexp(z] B))?
Putting this all back together gives us

0 Y jerty,) ZiWj exp(z] B)
—Vgpl(B,w) =0 (z — j
Ow; " ) = o % jenry) Wj exp(z] B)
T . JC L) ( ) Zjemmzjwjexp(zfm)
et Zierce) Wy oxp(z; B) Y jer(t) Wi exp(z] B)

Evaluating this term at w; = 1Vi gives us

) Y ieR(ty) Zj €xXp (2] B)
—Vapl(B,w ‘ =0 (Z i !
Owy, a8, w) w=1 T\ ZjeR(tk) eXP(ZJTB)
~ 5, exp(z} B) (z ~ 2 jeR(t;) Zj eXP(Z?B))
ilti<ts, ZjeR(ti) eXp(Z?,B) ZjGR(tz‘) exp(z?,@)

If we look at this for the m™ element of 3, we can rewrite it in terms of the Schoenfeld
residuals and the terms a;,,:

0 exp(z; B) X
—V pﬁ ﬁ,W)‘ ) :€,L»Sm— (51 z m—aim)
( awk 7 ( w=1/m Z ZjeR(ti) eXp(Zfﬁ) ( *

it <t

This shows that the impact of leaving out one observation on the score equation is a) the
direct effect of the observed failure for the £*® unit had on the likelihood and b) the indirect
effect of being excluded from the risk set; this impact occurs even if the k' patient is not
observed to fail. The second term also increases in magnitude as the time at risk increases,

so for patients at risk for a long time, this term typically outweighs the first term.
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4.5.6 Stratified Cox model

Sometimes the Cox model won’t be sufficiently flexible for our modeling needs. The issue
is that despite the baseline time-varying hazard being an unknown unspecified function, it
is assumed to describe the baseline hazard for all individuals in the population. This often
won’t hold for heterogeneous populations. The solution is to use a stratified Cox model,
which allows for the baseline hazard to depend on a known stratum. For example, let’s say
that the time course of a disease is known to vary by treatment. Then we would want a
model that could replicate that pattern. For patient ¢ in treatment group 7, let the function
jli] : Z* - Z* be the map between patient index and treatment group (AKA stratum)
membership. This is just a fancy way to say that there is a vector with n elements where
each element represents the stratum of the " individual. Let there be .J treatment groups
(i.e strata). Let the hazard ratio be defined as:

Aij (1) = Ajray (t) exp(z! B).

We can use the results from our derivation of the Cox partial likelihood to aid in our
derviation of the stratified Cox model’s likelihood.

The joint likelihood for the observed data {(t;,9;,2;,7[7]),i=1,...,n} is

L({)()}.8) = H () exp(al B))" exp (- exp(al 8) [ Vitw(u)da)  (4125)

We can rewrite this as the product over j and an inner product over the units ¢ such that

jlil = j:

J o0
0;

LENOLB) =TT TT (M) exp(a”8)) exp(—exp(zfﬁ) [ Y;(u))\j(u)du) (4.126)

3=1d|j[i]=j

Let each A;(t) be unspecified right-continuous non-decreasing step functions that jump at

the collection of times {¢; | j[i] =j}.:

L({*;(1)}, B) (Ii[ [T (A(t)exp(zr B))" eXp(—ZJ;fowZij[i]:jexp(Zfﬁ)K(U)Aj(U)dU)

i=Liljli)=j
(4.127)

J
(q ,‘ 1[—]1 (A(t) exp(278))" | exp(- £ S itk)=s (Zigrigs exp(z! B)Yi(tr)) Aj(tr))
J=Lg|2 =)

(4.128)
Solving the score equations for Equation (4.128) gives an expression for \;(t):

1

Ai(ty) =
! YilR(ty).li1= €XP(2Z] B)

(4.129)
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Plugging this back into the equations above gives

L(B) = ﬁ H_j ( exp(2; B) )& exp (— fl 52-) (4.130)

J=14|j[i]= zk|R(ti)7] exp(zk B)

Thus the likelihood is stratified by 7, but additive over j. The likelihood enforces that
information about [ is shared across all units, but the risk set to which each failure is

compared is limited to individuals within the same stratum.

4.5.7 Including time dependent variables in the Cox model

Let’s say we now have a variable W;(t¢) that changes with ¢ and we wish to include this
variable in our Cox model. There is no mathematical reason we cannot include this variable

in our model. The hazard ratio for an individual is now:

Ai(t) = Ao(t) exp(z] B+ Wi(t))

where v is the coefficient for the time-varying covariate. The first thing to note is that this is

no longer a proportional hazards model, because \;(t)/Ao(t) is not constant in time. Instead:

Ai(1)[Xo(t) = exp(z! B +yWi(t)).

Now we construct the partial likelihood.

T i
exp(z; B+ yWi(t;)) ))) (4.131)

jer(t) exp(z] B+ YW (t;

PL® -] (Z

The complication arises in the denominator, where we need to know the values of W, at time
t.

This isn’t an issue for variables that are exogenous, or determined outside of the patient’s
survival process. One example is W;(¢) is the dose of a medicine that is administered as part
of clinical trial. This variable is controlled by investigators and is hypothetically known at
every time point for every patient.

But for variables that are related to the patients’ survival processes, we might not know
these variables at every point. Let’s say we're running an influenza vaccine efficacy trial
and we are measuring antibody levels at regular visits after administration of vaccines. Our
primary outcome is influenza infection. Suppose that patient ¢ becomes infected on day t;.
What values should we use for W;(¢;)? What about W;(¢;)?

Let’s say that we have W;(¢; - 1) for the i*h participant, and we have W;(¢; - 1) and
W;(t; + 1) for participants j € R(¢;). The value for the W;(¢;) should be the W;(¢; - 1)
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because we have no other choices. As for participants j € R(t;), we should use the W;(¢;-1),
though it may be tempting to use W;(¢;+1). Using values in the future will bias our estimates
of v because this does not accurately represent the relative risk for unit ¢ at time t;. In fact,
using values in the past will also bias our estimates of ~y, similarly because this does not
accurately represent the relative risk for unit ¢ at time ¢; either. Solutions for this

We can still use the Breslow estimator for cumulative baseline hazard:

Ao(t) = > !

ifti<t,di=1 2jeR(t; exp(z?ﬁ +yW;(ti))

(4.132)

Representing time-varying covariates in survival data

The way we represent time-varying covariates in a dataset is somewhat different than what
we're used to with simpler survival data. The reason for this is that every individual has
different numbers of time-varying covariate values depending on their time to failure or

censoring. Thus a datatset in wide format might look like: An alternative is called the

id | time | status | age | atimel | atime2 | atime3 | al | a2 | a3
100 0 45 0 60 90 3.81341] 29
2| 80 1 65 0 60 NA 28|24 | NA

Table 4.1: Caption

counting process representation. The data now look like: These sort of data can be fitted

id | obs | time | age | a | start | stop | status
0 45 3.8 O 60 0
60 | 45 | 3.4 | 60 90 0
90 | 45 |29 90 | 100 0
0
1

0 65 | 28] O 60
60 | 65 | 24| 60 80

N N = = =
N =W N =

Table 4.2: Caption

in the survival package using the following command: coxph(Surv(start, stop, status)

age + a, data = data).
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4.5.8 Solving the problem with time-varying covariates

This discussion follows Tsiatis and Davidian 2004. Imagine we had the following set of

random variables for each participant in a clinical trial:
{(E = mln(lec’z)’ZZaVVl(u) | O<uc< ﬂ),l = 17 s Jn}'
If we observed this process for each individual, we could fit a Cox PH model as above:

- exp(zT B+ Wi(t)) |
PLB) = H (ZjeR(ti) exp(z?ﬂ + VVVJ(tZ)) )

i=1

(4.133)

where we know W;(u) exactly for each individual for their entire at risk period.

This is obviously not realistic; typically participants will have intermittent measurements
of biomarkers. An example might be CD4 counts, a measure of the concentration of T-cells
in the blood, which is an important measurement for those with HIV. A low CD4 count can
be an indication that an individual is at risk for AIDS; in fact a CD4 count of below 200 is
one of the diagnostic criteria for AIDS.

Furthermore, we typically will not observe any underlying “true” values of W;(u), but
instead we’ll observe some noisy proxy for that variable, say VT/Z(u) The solution to this is
to model W;(u) as an unknown parameter that we learn about via observations of W;(u) at

different time points:
Wi(uy) = Wiuz) + i (uy)
5z’(uj) ~F
I/VZ(UJ) = Qo+ Qi1Uj
(Oéio, az’l) ~G
Then the hazard ratio for X; would be:

Ai(t) = Mo(t) exp(y (o + aart) + 2] B)

The key limitation for survival analysis is that we need access to W;(u) for all u prior to
censoring or failure. This is only possible via a model for W;(u). One could imagine a
nonparametric model taking the place of the simple linear model employed above. Despite

its simplicity, the model above is investigated in Tsiatis and Davidian 2004.
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4.6 Frailty and unobserved variation

Sometimes we want to account for extra variability that occurs at the patient level. This

is typically handled via a positive, time-invariant random variable, &;, that multiplies the

hazard function:
Ni(t) | & = Eido(t)e P
Then the survival function, conditional on the random variable &; is

t T
Si(t] &) = exp(- fo Eiho(u)e® Bdu)
t T
:eXp(—fO Ao(u)e® Pdu)*

(4.134)

(4.135)

If we assume that the frailty term is gamma distributed, we can recover an analytic form

for the survival function. Let Ag(t) be the shared cumulative hazard so that the individual

cumulative hazard is w;Ao(t)e= P.

Si(t) = % /oo exp(—wAo(t)e® PYuw ! exp(—kw)dw

F(Q)./ w? Vexp(=(k + Ao(t)e® P)w)dw
K I'(0)
T T(0) (k + Ag(t)em B)

. 0
) (k + Ao(t)ezz‘Tﬁ)

In fact, the gamma frailty model allows for analytic forms for the density as well:

fi(t,0) = % fow(on(t)eziTﬁ)5 exp(—wAo(t)e% P)w ' exp(—kw)dw

= ()\O(t)eziT'B)‘SF(e / w0 exp(=(k + Ao(t)e™ P)w)dw

g\s '(0+0)
- ()‘O(t)e ﬁ) F(Q) (k+A0(t)e T,@)9+5
k@
= (ONo(t)e? 13)5(“[\0@)62%)9% nb: T(6+1) = 6T(h)

(Lt )( k )
k+ Ag(t)eziTﬁ k+ Ag(t)eziTB

This shows that the hazard rate is

0)\0(t)€z B
k+ Ao(t)ezlrﬁ .
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One thing to note is that, while it is a proportional hazards model conditional on &;, after
marginalizing over the frailty distribution it is no longer a proportional hazard model.
Something to note is that the marginal survival function when frailty is present is calcu-
lated as
]Eg [6_£A(t)] .
This is the Laplace transform of &:
L(c)=Eg [6_50] :

evaluated at A(t), or L(A(t)). Thus, if we know the Laplace transform for &, we’ll easily
know the marginal survival function.

This shows another way to get to the population hazard rate:

D 10s(5(1)) = 2 lor L(A(1)
= 700)
(VD)
LAY

= MO7R0)

The Laplace transform of a gamma distribution is

o (5

k+c

Given the structure of the proportional frailty model, namely \;(¢) = &;X\(¢), it is natural to
enforce the constraint that E[&] = 1. This would mean that k = 6. The most common way
to paramterize this model is in terms of the variance, which in this case is k% = %. Let v = %.
Then

With a baseline hazard rate of \o(t), we get the following results:

S(t) = (1+vAg(1)

Ao (1)

ENOI= 0@
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As v or, equivalently the variance, increases, the population hazard decreases as time
increases.

This is related to the selection effect in survivors. Let’s say we want to understand
the distribution of frailty for people who survive past a certain time point. We can use
Laplace transforms to do so. Remember, S(t) = L(A(t)). If we calculate S(¢ | X > s) and
we recognize the functional form as corresponding to the Laplace transform of a random
variable, E¢ [e"#A(1)] then we can say that & is distributed according to the distribution
corresponding to the Laplace transform.

Thus, we want the survival function for people surviving past a time s, for t > s:

P(X>t|X>s)=% (4.136)
_ % (4.137)
For the Gamma distribution we get
fﬁgi—m = (k+A@) 7 (k+A(s))° (4.138)
= (];1—/;((‘;)))9 (4.139)
0
“(evo sk =) A0

This conditional survival function is the Laplace transform of a Gamma random variable
with shape # and rate k+ A(s), evaluated at A(t) - A(s). What does this show us? We know

that the mean is no longer 1, comparing this to the Laplace transform for a Gamma random

£le) = (k‘]jrc)a'

0

=
Thus for the survivors, the expected frailty is

0

kE+ A(s)

variable parameterized with k and 6:

This variable has a mean of

This is declining as s increases. In the case where k =6 = v~!, we get

vl 1

v+ A(s) T 1+ vA(s)

88



4.6.1 Cox PH with omitted variables

This is an important point when thinking about the Cox proportional hazards model and
omitted variable bias. We can think of this problem similarly to frailty. Suppose the true

hazard function is the following:
Ai(t) = Ao(t) exp(zi1 81 + zi22) (4.141)
but that we don’t observe z;5. Then we can think of the observed model as a frailty model:
Ai(t) = E o(t) exp(zi1 1) (4.142)

where &; = e#2f2, If we suppose that z;5 has a population distribution, then the marginal

hazard function is what we’ll be inferring when fitting a Cox model:
E [)\z(t) | zil] =E [ezi?ﬁ? | Zﬂ] Ao(t) exp(zﬂﬁl) (4143)

Assuming that s # 0, we can use our results from above

ﬁe2i2ﬁ2|z“ (A(t))’
5621252 ‘Zil (A(t))

This will not typically be a proportional hazards model anymore. Suppose, for argument’s

E[Xi(t) | zir] = =Ao(t) exp(zi181)

sake, that e#272 | z;; was gamma distributed with a rate parameter depending on z;;. Then

O (t) ez

E [)\,-(t) | Zil] = /{Z(Zzl) 4 Ao(t)eznﬂl'

and

EN®) [ za] _ -z k() + Ag(t)es P
E [A](t) | Z]l] k(zzl) + Ao(t)ezilﬁl

This is clearly not a PH model, so any PH model we use will result in biased inferences and
bad coverage, though you can create scenarios in which the bias isn’t too bad, and coverage

can be corrected by using the sandwich covariance estimator.

4.6.2 Comparison between two risk groups with frailty

Suppose we have a high-risk group and a low-risk group, such that Aoy (t) = rAo(t) for r > 1.

The individual hazard rates have frailties attached to them, so they are:

N (t) = & io(t)
Air(t) = &z Ao ()
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If &5 and &, have the same density, namely a gamma with mean 1 and a variance equal to

v, then the population relative risk is

E[Ng(t)] 1+ vAo(t)

Ei ()] | 1+rvh(t)
This gives rise to a population hazard ratio comparison for the two groups, or relative risk,
that is declining in time. In this example the relative risk is always above 1, so we would
still be “right” directionally about individual relative risk from using the population relative
risk comparison, namely that the high risk group has higher risk than the lower group. This
is not always the case.
Suppose the low-risk group has a constant individual level hazard, but the high-risk group

has a hazard that starts at 2 and declines to just above 1:

N (t) =&pn(1+e™)
Air(t) = &
This results in a population relative risk as:
E[Ng(t)] _(1-et 1+wt
E[N\(t)] l+vt+v(l-et)

The odd thing is that the population relative risk starts at 2 and declines to below 1 as time

increases. This results in a paradox, namely that individual relative risk is always greater

than 1 but that population relative risk does not adhere to this relationship.

4.6.3 Frailty and influence functions

Remember back to Section 4.4.3 where we derived an expression for the influence function:

(-730) lo-o) )

For a survival model with a frailty term, we have the following marginal likelihood:

1
Volog(fo(ti,di,2)) |e:é(1) '

Fi(t,6) = (exp(27 B) Ao () )? [0 w0 exp(—who(t) exp(z” 8)) f (w)dw (4.144)

Taking logs of this expression gives us

log £(1.6) = 6(a 8 + log o(0)) + og [ w? exp(-uwa(t) exp(a! @) f(w)dw) (4.1
0
Taking gradients of both sides with respect to 3 gives

~ Jo T w0 Ao (¢) exp(~wAo(t) exp(z! B) + 27 B) f (w)dw
Jo~ w’ exp(-who(t) exp(z{ B)) f(w)dw

Vglog fi(t,0) = z; ((5 ) (4.146)
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simplifying a bit to

[ wexp(—wAo(t) exp(zl B)) f(w)dw
‘ —z|6- xp(z! 3)2 :
Vglog fi(t,0) =z (5 Ao(t) exp(z; B) [ 0 oxp(—who(t) exp (77 B)) f (w)du ) (4.147)
Compare this to the non-frailty version of the model:
fi(t,8) = (exp(zi B)Ao(t))’ exp(~Ao(t) exp(z{ B)) (4.148)
log fi(1,8) = 6(7 B + log \o(£)) ~ Ao(t) exp (27 B) (4.149)
with gradients
Vglog fi(t,0) =2z, ((5 - Ao(t) exp(ziTﬁ)) (4.150)

If & ~ Gammal(6, k), we get

/000 w® exp(—wAo(t) exp(z! B)) f(w)dw =

F(Z) [OooeXp(_w(AO(t)eZZTﬁ+k;))w9+5—1dw

ko I'(0+0)
CT(8) (k+ Ag(t)e B)o+o

5 0+5
&) ()

and, noting that: T(0+1+0) = (6+0)I(6+0) = (6+0)0°L'(9)

o0 0 o0
/(; Wt exp(—wAo(t) exp(zl B)) f(w)dw = I /o exp(—w(AO(t)ezzTﬁ + k) w9 dw
K T(0+1+9)

T(0) (k+ Ag(t)e P)?
(6+5) i 0+1+6
kW (k: . Ao(t)ez?ﬂ)

The ratio of these two expressions gives:

0+
;T (4.151)
k+Ao(t)e P
Incorporating this into the expression above and substituting k = 6 = v~! we get:
1+vd
Vglog f;(t,6) = z; | 6 — Ao(t) exp(z? 4.152
o8 (0.0 =3 5~ do0) (e ) 00— (4152)

We can see that when 0 = 1 the term:
1+v6
L+ vAg(t)e P

shrinks the cumulative hazard term Aq(t) exp(z! 3) towards zero if the cumulative hazard
term is greater than 1 and away from zero otherwise. When § = 0 the term shrinks the

Ao(t) exp(z] B) towards zero. This should act to shrink extreme residuals towards zero.
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Chapter 5

Appendix

5.1 Map between Weibull parameterizations
Our course notes (and Klein, Moeschberger, et al. 2003) define the Weibull hazard as:
A(t) = yat*™?

Base R defines the Weibull parameterization for rweibull(n, shape=«a, scale=0) as
aflt a-1
A =2 (—)
o\o
The survival package parameterizes the Weibull, with intercept=p, scale = 7, as

1 1
- [-1
AE) = =t

Thus, we can see that the following identities hold:

1 1
’y-;:g—m

v=etT — p=-7log(y)

This also implies that regression coefficients from survreg are interpreted differently from
the typical interpretation from a proportional hazards model. The proportional hazards
Weibull model is typically written

’}/GBTzi Oétafl
But survreg parameterizes the model as

1 tl/T_l

T@(M"'GTZi )T
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This means that:

B=-0/t
v = e T

Thus, a positive coefficient in the parametric hazard which indicates that the variable in-
creases hazard, all else being equal, will be negative in survreg’s coeflicient results and vice

versa.
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