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Chapter 1

Introduction

This introduction is based in part on Klein, Moeschberger, et al. 2003, and in part on O.

Aalen et al. 2008 plus Fleming and Harrington 2005.

Survival analysis is the modeling and analysis of time-to-event data. Think about a

clinical trial for a new COVID vaccine and how you might model the length of time between

study entry and infection in each arm of the trial. Let Xi be the time from trial entry to

infection for the i-th participant. These sorts of trials are typically run until a prespecified

number of people have become infected. Let n be the total number of participants in the

trial and let r be the prespecified number of infections. Let Ti be the observed infection

time for the i-th participant. This means that for r participants, Ti = Xi, but for n − r
participants we know only that the time-to-infection is larger than the observed time. Let

Ci denote the time from study entry for participant i to study end. Then Ti = min(Xi,Ci),
and let δi = 1 (Ti =Xi). The density of Ti is related to the joint probability for Xi and Ci,

which is indexed by a possibly infinite dimensional parameter θ: Pθ(Xi > t,Ci > c). When

δi = 1, and Ti =Xi, the likelihood of the observation is

(− ∂
∂u
Pθ(Xi > u,Ci > t))∣

u=t
,

while the likelihood for δi = 0 is

(− ∂
∂u
Pθ(Xi > t,Ci > u))∣

u=t
,

Then Ti = Ci for the other n − r participants. Under the null hypothesis that the vaccine

has no effect, the population distribution function for all n participants for Xi,Ci is Pθ(X1 >
x,C1 > c). Then the joint density for the observed infection times is as follows:

f(t1, . . . , tn) = n!
r

∏
i=1
(− ∂
∂u
Pθ(X1 > u,C1 > t(i)))∣

u=t
(i)

n

∏
i=r+1
((− ∂

∂u
Pθ(X1 > t(i),C1 > u))∣

u=t
(i)

) ,
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where t(i) is the i-th order statistic of the set {t1, . . . , tn}. Note that this is different from

most other data analysis where missing observations are not expected to occur with much

frequency. On the contrary, in survival analysis, missingness, both truncation and censoring

are expected to occur with nearly every dataset, so much of our time will be spent ensuring

our methods work when data arise with these peculiarities.

1.1 Independent censoring

Now suppose that X1 ⊥⊥ C1, and that θ partitions into η and ϕ, such that

Pθ(X1 > x,C1 > c) = Pη(X1 > x)Pϕ(C1 > c).

Then we can rewrite the joint observational density for Ti as:

f(t1, . . . , tn) = n!(
r

∏
i=1
fη(t(i)))

n

∏
i=r+1

P (X1 > t(i))

× (
r

∏
i=1
Pϕ(C1 > t(i)))

n

∏
i=r+1

fϕ(t(i)).

If we are only interested about inference about η, the parameters that govern the distribution

of the true time-to-infection random variables, we can ignore the the distribution for the

censoring random variables C1, and maximize the likelihood because, in η:

f(t1, . . . , tn) ∝ (
r

∏
i=1
fη(t(i)))

n

∏
i=r+1

P (X1 > t(i))

We will talk in more detail about censoring in the coming lectures.

1.2 Mean time to failure

O. Aalen et al. 2008 notes that we cannot even compute a simple mean in this situation, so

something like a t-test will be useless. As an aside, let’s try to compute a mean from the

data above. Let T̄ = 1
n ∑

n
i=1 Ti. We can show that limn→∞ T̄ ≤ E [Xi] with probability 1.

Proof. Let Ti =Xi1 (Xi ≤ Ci) +Ci1 (Xi > Ci). Then by the SLLN T̄
a.s.→ E [Ti].

E [Ti] = E [Xi1 (Xi ≤ Ci)] +E [Ci1 (Xi > Ci)]

≤ E [Xi1 (Xi ≤ Ci)] +E [Xi1 (Xi > Ci)] = E [Xi]
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1.3 Survival function

How can we compute the mean time to infection then? One way to estimate the mean time

to infection is to first estimate the function SXi
(t) = P (Xi > t), which is also known as the

survival function. Recall this fact about non-negative random variables Xi ≥ 0 w.p. 1:

E [Xi] = ∫
∞

0
P (Xi > t)dt

This follows from an application of Fubini’s theorem applied to the integral:

E [Xi] = ∫
∞

0
udPXi

(u)

= ∫
∞

0
∫
∞

0
1 (0 ≤ t ≤ u)dt dPXi

(u)

= ∫
∞

0
∫
∞

0
1 (0 ≤ t ≤ u)dPXi

(u)dt

= ∫
∞

0
P (Xi > t)dt

1.3.1 Properties of the survival function

Given that the survival function is defined as SXi
(t) = 1 − FXi

(t) (also known as the com-

plementary CDF) the survival function inherits its properties from the CDF. The survival

function:

1. SXi
(t) is a nonincreasing function

2. SXi
(0) = 1

3. limt→∞ SXi
(t) = 0

4. Has lefthand limits:

lim
s↗t

SXi
(s) = SXi

(t−).

5. Is right continuous:

lim
s↘t

SXi
(s) = SXi

(t).

An example of a discrete survival function is shown in Figure 1.1.
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Figure 1.1: Example plot of a survival function for a discrete survival time, bounded between

[0,10]

1.4 Hazard function

Another way to characterize the random variable Xi is the hazard function, which is typically

denoted as λ(t) or h(t) and is defined as

λi(t) = lim
∆t↘0

1

∆t
P (t ≤Xi < t +∆t ∣Xi ≥ t)

= lim
∆t↘0

1

∆t

P (t ≤Xi < t +∆t)
P (Xi ≥ t)

First, note that we can define P (Xi ≥ t) in terms of the survival function as:

lim
s↗t

SXi
(s) = SXi

(t−).

Of course, when Xi is absolutely continuous,SXi
(t−) = SXi

(t), but when Xi is discrete, or

mixed discrete and continuous, as noted above, it is not true in general that the survival

function is left-continuous.

A few things to note about λi(t): when Xi is an absolutely continuous random variable,

which occurs when we’re considering survival in continuous time, we can write this in terms

of the probability density function fXi
(t) and the cumulative distribution function FXi

(t):

λi(t) = lim
∆t↘0

1

∆t

P (t ≤Xi < t +∆t)
P (Xi ≥ t)

= lim
∆t↘0

FXi
(t +∆t) − FXi

(t)
∆t

× 1

1 − FXi
(t)

= fXi
(t)

1 − FXi
(t)

.
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Let’s examine how the survival function and the hazard function fit together.

λi(t) =
fXi
(t)

SXi
(t−)

.

Note that we can write the hazard function in terms of the survival function instead of the

density, when Xi is absolutely continuous:

λi(t) = lim
∆t↘0

1

∆t

P (t ≤Xi < t +∆t)
P (Xi ≥ t)

= lim
∆t↘0

SXi
(t) − SXi

(t +∆t)
∆t

× 1

SXi
(t)

= − d
dt
SXi
(t)/SXi

(t).

This implies that

− d
dt

logSXi
(t) = λi(t).

If we integrate both sides, we get another important identity in survival analysis:

∫
u

0

d

dt
logSXi

(t)dt = −∫
u

0
λi(t)dt (1.1)

logSXi
(u) − logSXi

(0) = −∫
u

0
λi(t)dt note SXi

(0) = 1 (1.2)

SXi
(u) = exp(−∫

u

0
λi(t)dt) (1.3)

1.4.1 Properties of the hazard function

The relationship SXi
(u) = exp (−∫

u

0 λi(t)dt) and the properties of the survival function reveal

the following facts about the hazard function and highlight its differences with a probability

density.

1. limt→∞ SX(t) = 0 implies that limt→∞ ∫
t

0 λ(u)du = ∞

2. Given that SX(t) is a nonincreasing function, λ(t) ≥ 0 for all t.

So unlike a probability density function, λ(t) isn’t integrable over the support of the random
variable.

1.5 Density function for survival time

Given that we have SX(t) and λ(t) = fX(t)
SX(t−) , we can recover the density, fX(t) easily:

fX(t) = λ(t)SX(t)
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1.6 Mean residual lifetime

We also might be interested in the mean residual lifetime (mrl for short), or the expected

lifetime given survival up to a certain point:

E [Xi − x ∣Xi > x] .

We can compute this for an absolutely continuous random variable by using the survival

function:

∫
∞
x (u − x)fXi

(u)du
SXi
(x)

= ∫
∞
x SXi

(u)du
SXi
(x)

To derive the mrl in terms of the survival function, note that we can use Fubini again on

the numerator (Exercise 1), or we can use integration by parts:

∫
∞

x
(u − x)fXi

(u)du = −∫
∞

x
(u − x) d

du
SXi
(u)du

= −(u − x)SXi
(u)∣∞u=x + ∫

∞

x
SXi
(u)du

and use the fact that limu→∞ SXi
(u) = 0. We also need the following:

lim
u→∞

uP (Xi > u) = 0. (1.4)

This is a pretty weak condition, random variables with second moments satisfy this condition

(Exercise 2), as do random variables with only first moments. It turns out that under this

condition we’ll have a weak law of large numbers (see §7.1 in Resnick 2019).

Suppose we assume that E [X] ≤ ∞. Then we can write:

E [X] = E [X1 (X ≤ n)] +E [X1 (X > n)]

Note that if we define Xn =X1 (X ≤ n) then

lim
n→∞

Xn =X.

By the Dominated Convergence Theorem (DCT), E [Xn] → E [X]. Then

E [X] = E [Xn] +E [X1 (X > n)]

≥ E [Xn] +E [n1 (X > n)]

= E [Xn] + nP (X > n)

By the DCT E [X] −E [Xn] → 0 so

lim
n→∞

nP (Xi > n) = 0.

However, there are random variables for which E [Xi] does not exist, but do satisfy Equa-

tion (1.4) (see the end of §7.1 in Resnick 2019).
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1.7 Cumulative hazard function

One final important quantity that describes a survival distribution is that of cumulative

hazard, which we’ll denote as Λ(t), though it is also denoted as H(t) in Klein, Moeschberger,

et al. 2003. This is defined as you might expect:

Λ(t) = ∫
t

0
λ(u)du.

It has the important property that for any failure time X with a given cumulative hazard

function, the random variable Y = Λ(X) is exponentially distributed with rate 1. The

derivation is straightforward. Remember that P (X > t) = exp (−Λ(t))

P (Λ(X) > t) = P (X > Λ−1(t))

= exp (−Λ(Λ−1(t)))

= exp (−t)

1.8 Discrete survival time

We’ve been working with continuous survival times until now. If X is a discrete random

variable with support on {t1, t2, . . .}, we lose some of the tidyness of the previous derivations.

We can define the distribution of X in terms of the survival function, P (X > t). First let

pj = P (X = tj), so
SX(t) = P (X > t) = ∑

j∣tj>t
pj

We can also define the hazard function for a discrete random variable:

λ(tj) =
pj

SX(tj−1
=

pj
pj + pj+1 + . . .

Note that pj = SX(tj−1) − SX(tj), then

λ(tj) = 1 −
SX(tj)
SX(tj−1)

.

If we let t0 = 0 then SX(t0) = 1. This allows us to write the survival function in a sort of

telescoping series:

P (X > tj) = P (X > t0)
P (X > t1)
P (X > t0)

P (X > t2)
P (X > t1)

. . .
P (X > tj)
P (X > tj−1)

= 1SX(t1)
SX(t0)

SX(t2)
SX(t1)

. . .
SX(tj)
SX(tj−1)
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This yields another way to write SX(t):

SX(t) = ∏
j∣tj≤t
(1 − λ(tj)). (1.5)

It turns out that we can write the survival function for continuous random variables in the

same way.

1.8.1 Connection between discrete and continuous survival func-

tions

Recall the definition of the hazard function:

λ(t) = lim
∆t↘0

1

∆t
P (t ≤X < t +∆t ∣X ≥ t)

Then if we think of ∆tλ(t) as P (t ≤X < t +∆t ∣X ≥ t) and we let T be a partition of (0,∞)
with partition size ∆t, we can use Equation (1.5) to represent the survival function:

SX(t) = ∏
tj∈T ∣tj≤t

(1 − λ(tj)∆t). (1.6)

We can show that as the partition of the time domain gets finer and finer, we will recover

SX(t) = exp(− ∫
t

0 λ(u)du)

SX(t) = ∏
tj∈T ∣tj≤t

(1 − λ(tj)∆t) (1.7)

logSX(t) = ∑
tj∈T ∣tj≤t

log(1 − λ(tj)∆t) (1.8)

We use the Taylor expansion of log(1 − λ(tj)∆t) for small λ(tj)∆t, assuming that λ(t) is
sufficiently well-behaved.

log(1 − λ(tj)∆t) ≊ −λ(tj)∆t.

Then

logSX(t) ≊ ∑
tj∈T ∣tj≤t

−λ(tj)∆t (1.9)

As

lim
∆t↘0

∑
tj∈T ∣tj≤t

−λ(tj)∆t = −∫
t

0
λ(u)du.

So, SX(t) = exp(− ∫
t

0 λ(u)du), or

SX(t) = exp(−Λ(t)) (1.10)
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1.9 Examples

The first example we’ll run through is for an exponentially distributed survival time:

Xi
iid∼ Exp(λ).

The survival function is SX(t) = e−λt. We can read off from this that Λ(t) = λt. What’s the

hazard function? Let’s plot the hazard function. What does this imply about the exponential

distribution (memorylessness)? The mean lifetime is 1
λ . The mean residual lifetime is:

∫
∞
t e−λudu

e−λt
= 1

λ

e−λtdu

e−λt

= 1

λ
.

This is a consequence of the memoryless property of the exponential distribution.

Another parametric distribution for survival times is the Weibull.

Xi
iid∼ Weibull(γ,α).

The survival function:

SX(t) = exp(−γtα).

Again, we have that Λ(t) = γtα, so we can take the derivative with respect to t to get the

hazard:

λ(t) = γαtα−1.

This is more flexible than the exponential distribution, though note that for α = 1, Xi ∼
Exponential(γ), so the Weibull family contains the exponential family as a special case. The

α parameter allows for the hazard rate to have more flexibility than the exponential. If α > 1,
the hazard rate is increasing in t. This corresponds to an aging process, whereby the longer

something has survived, the higher the rate of failure. If α < 1, the hazard rate is decreasing

in t. This might correspond to something like the hazard for SIDS, which is quite high for

children before 1 year old, but drops off rapidly after 1. Let’s compute the mean lifetime,

E [X] = ∫
∞
0 SX(t)dt, using a v-sub, v = tα, so v 1

α = t→ 1
αv

1
α
−1dv = dt:

∫
∞

0
exp(−γtα)dt = 1

α ∫
∞

0
v

1
α
−1 exp(−γv)dv

= 1

α

1

γ
1
α

Γ( 1
α
)

=
Γ( 1α + 1)
γ

1
α

12



The mean residual lifetime is a bit more involved. Let v = γuα so ( vγ)
1/α
= u→ γ−1/α 1

αv
1
α
−1dv =

du:

∫
∞

t
exp(−γuα)du = γ−1/α 1

α ∫
∞

γtα
v

1
α
−1 exp(−v)dv

= γ−1/α 1
α
Γ( 1
α
, γtα),

where Γ( 1α , γtα) is the upper incomplete Gamma function.
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Chapter 2

Censoring and truncation

Now let’s delve into more detail about censoring, and how the likelihood can be built up

from the hazard function and the survival function. Klein, Moeschberger, et al. 2003 define

censoring as imprecise knowledge about an event time. If we observe a failure or an event

exactly, the observation is not censored, but if we know only that an observation occurred

within a range of values, we say the observation is censored. Let Xi, as usual, be our failure

time, which is not completely observed. Instead if:

• Xi ∈ [U,∞), the observation is right censored

• Xi ∈ [0, V ), the observation is left censored

• Xi ∈ [U,V ), the observation is interval censored

2.1 Right censoring

Right censoring occurs when a survival time is known to be larger than a given value. This

is the most common censoring scenario in survival analysis.

Recall our definition in Chapter 1:

• Let Xi be the time to failure, or time to event for individual i.

• Let Ci be the time to censoring. It may be helpful to think about Ci as the time to

investigator measurement.

• Let δi = 1 (Xi ≤ Ci).

• Let Ti =min(Xi,Ci).

Given our definitions in Section 2.1, when an observation is censored, or when a measurement

is taken of the survival time before the event has happened, δi = 0 and Ti = Ci.

14
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Figure 2.1: Example of Type I censoring.

2.1.1 Type I censoring

The simplest censoring scenario is one in which all individuals have the same, nonrandom

censoring time. Imagine a study is designed to follow 5 startups that are spun out of a tech

incubator to study how long it takes a company to land its first contract. This information

will be used for designing investments 2 years from the study date, so the study has a length

of 1.75 years. We can say that all observations will have to have occurred, or not, by 1.75

years.

Figure 2.1 shows a potential result of the study, where 2 out of the 5 companies have not

landed a contract. In this case,

• For all individuals such that δi = 0 Ô⇒ Xi > C

• δi = 1 Ô⇒ Ti =Xi.

2.1.2 Generalized type I censoring

A more general scenario, which is closer to most examples in clinical trials, is when each

individual has a different study entry time and the investigator has a preset study end time.

This is called generalized Type I censoring. These study entry times are typically assumed

to be independent of the survival time. This is shown in Figure 2.2. When study entry is

independent from survival time, the analysis proceeds as shown in Figure 2.3. For generalized

type I censoring,

• For all individuals such that δi = 0 Ô⇒ Xi > Ci
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Figure 2.2: Example of generalized Type I censoring, where each individual has a separate

study entry time.
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Figure 2.3: Example of generalized Type I censoring, viewed in patient time.
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• δi = 1 Ô⇒ Ti =Xi.

This is different from Type I censoring in that each individual has a different censoring time.

2.1.3 Type II censoring

Type II censoring occurs when all units have the same study entry time, but researchers

design the study to end when r < n units fail out of n total units under observation.

• For the first r, lucky or unlucky participants, δi = 1 Ô⇒ Ti = X(i) or the ith order

statistic.

• For the remaining n − r individuals, δi = 0 Ô⇒ Xi >X(r).

2.1.4 Generalized Type II censoring

You may be wondering, what happens when units have differing start times but we want to

end the trial after the r-th failure? It turns out that this was not a solved problem until

Rühl et al. 2023, which was quite surprising to me.

2.1.5 Independent censoring

A third type of censoring, helpfully called independent censoring, takes Xi ⊥⊥ Ci, and thus

conclusions similar to those of generalized type I censoring can be drawn:

• For all individuals such that δi = 0 Ô⇒ Xi > Ci

• δi = 1 Ô⇒ Ti =Xi.

2.2 Noninformative censoring

All of the previous censoring scenarios can be summarized by the following formula:

λ(t) = lim
∆t↘0

1

∆t
P (t ≤Xi < t +∆t ∣Xi ≥ t,Ci ≥ t) (2.1)

Note that this implies the following:

P (t ≤Xi < t +∆t ∣Xi ≥ t) = P (t ≤Xi < t +∆t ∣Xi ≥ t,Ci ≥ t) . (2.2)

which is equivalent to writing that failure
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For independent censoring, Equation (2.2) holds, given that P (Xi > t,Ci > c) = P (Xi >
t)P (Ci > c). Note that the observed hazard for uncensored failure times:

− ∂
∂uP (Xi > u,Ci > t) ∣u=t
P (Xi > t−,Ci > t−)

=
− d
duSX(u)
SX(t−)

(2.3)

Here’s a counterexample:

Example 2.2.1. Dependent failure and censoring

Let P (Xi > x,Ci > c) = exp(−αx − µc − θxc). We can find the marginal survival functions

just by evaluating P (Xi > x,Ci > 0) and vice-versa, which yields:

P (Xi > x) = exp(−αx)

P (Ci > c) = exp(−µc)

This yields a constant hazard. However, the observable hazard is the following:

− ∂
∂uP (Xi > u,Ci > t) ∣u=t
P (Xi > t−,Ci > t−)

= α + θt

− ∂
∂uP (Xi > t,Ci > u) ∣u=t
P (Xi > t−,Ci > t−)

= µ + θt

This leads to an observable survival function:

SX(x) = exp(−αx − θ/2x2)

SC(c) = exp(−µc − θ/2c2)

Note that SX(x)SC(c) ≠ exp(−αx − µc − θxc).
However, if we calculate P (Xi > x,Ci >Xi) we get:

∫
∞

x
− ∂
∂u
P (Xi > u,Ci > t) ∣u=t dt = ∫

∞

x
(α + θt) exp(−αt − µt − θt2)dt

while

∫
∞

x
− ∂
∂u
SX(u)SC(t) ∣u=t dt = ∫

∞

x
(− d
dt

exp(−αt − θ/2t2)) exp(−µt − θ/2t2)

= ∫
∞

x
(α + θt) exp(−αt − µt − θt2)du

Another interesting example is the following:
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Example 2.2.2. Dependent failure and censoring can be noninformative

Let Y1, Y2 and Y12 be exponentially distributed with rates α1, α2, α12, respectively. Let X =
Y1 ∧ Y12 and C = Y2 ∧ Y12. The survival function P (X > x,C > c) = P (Y1 > x,Y2 > c, Y12 >
x ∨ c) = e−α1x−α2c−α12x∨c Then marginally X is exponential with rate α1 + α12, which is also

equal to its hazard function. In order for noninformative censoring to hold, we need to check

Equation (2.1), or that

α1 + α12 = lim
∆t↘0

1

∆t
P (t ≤X < t +∆t ∣X ≥ t,C ≥ t) (2.4)

Because t +∆t ∨ t = t +∆t as ∆t > 0,

lim
∆t↘0

e−α1t−α2t−α12t − e−(α1+α12)(t+∆t)−α2t

∆t
(2.5)

which just equals e−αt − d
dse
−(α1+α12)s ∣s=t or (α1 + α12)e−α1t−α2t−α12t. Then

lim
∆t↘0

1

∆t
P (t ≤X < t +∆t ∣X ≥ t,C ≥ t) = (α1 + α12)e−α1t−α2t−α12t

e−α1t−α2t−α12t
(2.6)

= α1 + α12 (2.7)

So in this case, while X and C are dependent, we still have noninformative censoring.

The benefit of noninformative censoring is that we can ignore the censoring random

variables when constructing the likelihood for the survival random variables.

2.2.1 Reasons for informative censoring

A simple hypothetical situation with informative censoring would be one in which sick pa-

tients are lost to follow-up.

2.3 Truncation

While censoring can be seen as partial information about an observation, truncation deals

with exact observations of selected units. The simplest example of truncation is when mea-

surements are made using an instrument with a lower limit of detection. Imagine using a

microscope to measure the diameter of cells on a plate that has a lower limit of detection of

5 microns. If interest lies in inferring the population mean diameter of the cells, one must

take into account the fact that only cells with diameters of greater than 5 micros can be seen

with the microscope.
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Failure to take truncation into account can be a source of bias in inference.

E [Xi] = E [Xi ∣Xi ≥ V ]P (Xi ≥ V ) +E [Xi ∣Xi < V ]P (Xi < V )

= E [Xi ∣Xi ≥ V ] + P (Xi < V )(E [Xi ∣Xi < V ] −E [Xi ∣Xi ≥ V ])

≤ E [Xi ∣Xi ≥ V ]

The last line follows because (E [Xi ∣Xi < V ] − E [Xi ∣Xi ≥ V ]) ≤ 0. Using an estimator for

E [Xi ∣Xi ≥ V ] when the target of inference in E [Xi] would result in positive bias. Of course,

when the estimator instead estimates E [Xi ∣Xi < V ] the bias would be negative. Depending

on the value of V and the distribution of Xi, the bias can be severe.

For example, suppose a researcher is interested in learning about the impact of medication

refills on the lifespans of patients. The researcher has access to a database in which they

select patients who refilled medications at least once. The researcher subsequently selects a

control group that is perfectly matched to the medication refill group, and upon analyzing

the data, the analyst discovers that refilling prescription medication leads to longer lifespans.

What is wrong with this analysis?

The observations in this example can be said to be left-truncated, because the researcher

conditions the observations in the treatment group on having a lifespan long enough to fill

a medication.

Formally, we say that the density for a truncated observation is conditioned on the

probability of the observation lying in the truncated region.

• If a researcher selects 1 (Xi ≥ V ) we say the data are left-truncated, and fX(x) =
− d

dx
SX(x)

SX(V )

• If a researcher selects 1 (Xi ≤ U) we say the data are right-truncated, and fX(x) =
− d

dx
SX(x)

1−SX(U)

• If a researcher selects 1 (V ≤Xi ≤ U) we say the data are interval-truncated, and

fX(x) =
− d

dx
SX(x)

SX(V )−SX(U)
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2.4 Likelihood construction

We now turn to how to construct likelihoods in each of the prior scenarios, under censored

or truncated data. As a reminder:

• Let Xi be the time to failure, or time to event for individual i.

• Let Ci be the time to censoring. It may be helpful to think about Ci as the time to

investigator measurement.

• Let δi = 1 (Xi ≤ Ci).

• Let Ti =min(Xi,Ci).

When δi = 1, we observe Ti = Xi; this is the event that {Xi = Ti,Ci ≥ Xi}. When δi = 0,

we observe Ti = Ci; this is the event that {Ci = Ti,Ci < Xi}. Let the joint distribution of

Xi,Ci be written as Pθ(X > x,C > c), and further let θ = (η, ϕ) such that Pθ(X > x,C > c) =
Pη(X > x)Pϕ(C > c ∣ X > x). We showed in Chapter 1 that the likelihood corresponding to

the random variables Ti, δi, fθ(t, δ), can be written in terms of partial derivatives of the joint

density function when Xi and Ci are absolutely continuous random variables.

fθ(t, δ) = (−
∂

∂u
Pθ(X > u,C > t) ∣u=t)

δ

(− ∂
∂u
Pθ(X > t,C > u) ∣u=t)

1−δ

Let’s rewrite the partial derivatives in terms of their limits:

fθ(t, δ) = ( lim
∆t↘0

1

∆t
Pθ(t ≤X < t +∆t,C > t))

δ

( lim
∆t↘0

1

∆t
Pθ(X > t, t ≤ C < t +∆t))

1−δ

We can factorize the distribution function:

fθ(t, δ) = ( lim
∆t↘0

1

∆t
Pθ(t ≤X < t +∆t ∣X > t,C > t)Pϕ(C > t ∣X > t)Pη(X > t))

δ

× ( lim
∆t↘0

1

∆t
Pϕ(t ≤ C < t +∆t ∣X > t)Pη(X > t))

1−δ

Assuming Equation (2.1), we can rewrite lim∆t↘0
1
∆tPθ(t ≤X < t +∆t ∣X > t,C > t) as

lim
∆t↘0

1

∆t
Pη(t ≤X < t +∆t ∣X > t)

Putting the expression back together yields:

fθ(t, δ) = ( lim
∆t↘0

1

∆t
Pη(t ≤X < t +∆t ∣X > t)Pϕ(C > t ∣X > t)Pη(X > t))

δ

× ( lim
∆t↘0

1

∆t
Pϕ(t ≤ C < t +∆t ∣X > t)Pη(X > t))

1−δ
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and rearranging and subbing in λη(t) for the hazard function:

fθ(t, δ) = (λη(t)Pη(X > t))δ Pη(X > t)1−δPϕ(C > t ∣X > t)δ ( lim
∆t↘0

1

∆t
Pϕ(t ≤ C < t +∆t ∣X > t))

1−δ

= λη(t)δPη(X > t)Pϕ(C > t ∣X > t)δ ( lim
∆t↘0

1

∆t
Pϕ(t ≤ C < t +∆t ∣X > t))

1−δ

This means that we can factorize the joint density:

fθ(t, δ) = fη(t, δ)fϕ(t, δ).

Thus, noninformative censoring and parameter separability yield a separable joint density.

This means that when we want to do maximum likelihood for survival data, we can ignore

the model for the censoring times, fϕ(t, δ), and focus on only the model for the failure times:

fη(t, δ) = λη(t)δPη(X ≥ t).

We can write this expression fully in terms of the hazard function by recalling Equation (1.3):

fη(t, δ) = λη(t)δ exp(−∫
t

0
λη(u)du) . (2.8)

Example 2.4.1. MLE for exponential survival time Let Xi
iid∼ Exp(α) and assume we have

independent censoring (Xi ⊥⊥ Ci), the parameters for the censoring process are separable from

α, and that Ci are iid such that E [Ci] < ∞. Then our observed data are Ti = min(Xi,Ci)
and δi = 1 (Xi ≤ Ci). According to Equation (3.1) we can write the likelihood as

fα(t1, . . . , tn, δ1, . . . , δn) =
n

∏
i=1
αδi exp(−∑ni=1 ∫

ti
0 αdu)

= α∑n
i=1 δi exp(−α∑ni=1 ti)

The log-likelihood is

log(fα(t1, . . . , tn, δ1, . . . , δn)) = log(α)
n

∑
i=1
δi − α

n

∑
i=1
ti

which has the maximizer

α̂ = ∑
n
i=1 δi

∑ni=1 ti
.

Let’s show that this converges a.s. to α as n→∞. We can rewrite ∑
n
i=1 δi
∑n

i=1 ti
as

1
n ∑

n
i=1 1 (Xi ≤ Ci)

1
n ∑

n
i=1Xi1 (Xi ≤ Ci) +Ci1 (Xi > Ci)
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The top and bottom expressions converge a.s. by Kolmogorov’s Strong Law of Large Num-

bers to

1

n

n

∑
i=1
1 (Xi ≤ Ci)

a.s.→ E(Xi,Ci) [1 (Xi ≤ Ci)]

1

n

n

∑
i=1
Xi1 (Xi ≤ Ci) +Ci1 (Xi > Ci)

a.s.→ E(Xi,Ci) [Xi1 (Xi ≤ Ci) +Ci1 (Xi > Ci)]

We can evaluate the top expression using the tower property of expectation:

E(Xi,Ci) [1 (Xi ≤ Ci)] = ECi
[EXi∣Ci

[1 (Xi ≤ c) ∣ Ci = c]]

= ECi
[1 − e−αCi]

where the second line follows from the independent censoring condition. The bottom expres-

sion becomes:

E(Xi,Ci) [Xi1 (Xi ≤ Ci) +Ci1 (Xi > Ci)] = ECi
[EXi∣Ci

[Xi1 (Xi ≤ c) ∣ Ci = c]]

+ECi
[EXi∣Ci

[c1 (Xi > c) ∣ Ci = c]]

= ECi
[ 1
α
(1 − (1 + αCi)e−αCi)] +ECi

[Cie−αCi]

= 1

α
ECi
[1 − e−αCi]

Thus
∑ni=1 δi
∑ni=1 ti

a.s.→ α

To show that ∫
c

0 xαe
−αxdx = 1

α(1−(1+αc)e−αc), we can use the trick of differentiating under

the integral sign.

α∫
c

0
xe−αxdx = α∫

c

0
− d
dα
e−αxdx

= α(− d
dα
)∫

c

0
e−αxdx

= α(− d
dα
) 1
α
(1 − e−αc)

= α(1 − (1 + αc)e
−αc

α2
)
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Chapter 3

Nonparametric estimator of survival

function

3.1 Derivation of Nelson-Aalen and Kaplan-Meier es-

timators

When we have (Xi,Ci)
iid∼ F such that noninformative censoring and parameter separability

hold, we showed in Equation (2.8) that we can write the likelihood for the survival process:

fη(t1, . . . , tn, δ1, . . . , δn) =
n

∏
i=1
λη(ti)δi exp(−∫

ti

0
λη(u)du) .

This can again be simplified by collecting terms inside the exponential:

fη(t1, . . . , tn, δ1, . . . , δn) = (
n

∏
i=1
λη(ti)δi) exp(−

n

∑
i=1
∫

ti

0
λη(u)du) . (3.1)

Let’s make a slight change to how we write the survival function. Define the indicator

function Y (u) to be

Yi(u) = 1 (ti ≥ u) .

This function is left-continuous, with right-hand limits, an example of which is shown in

Figure 3.1:

This allows us to rewrite our likelihood as follows:

fη(t1, . . . , tn, δ1, . . . , δn) = (
n

∏
i=1
λη(ti)δi) exp(−

n

∑
i=1
∫
∞

0
Yi(u)λη(u)du) (3.2)

= (
n

∏
i=1
λη(ti)δi) exp(−∫

∞

0
λη(u)

n

∑
i=1
Yi(u)du) (3.3)
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Figure 3.1: Example plot of an at-risk function
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Figure 3.2: Example plot of a discrete hazard function

For notational convenience, we’ll define the function Y (u) as:

Y (u) =
n

∑
i=1
Yi(u).

Then our likelihood is:

fη(t1, . . . , tn, δ1, . . . , δn) = (
n

∏
i=1
λη(ti)δi) exp(−∫

∞

0
λη(u)Y (u)du) (3.4)

We can consider a nonparametric model for the hazard, estimating λ at each ti as a

separate parameter. An example of this is shown in Figure 3.2, which corresponds to the

discrete survival function in Figure 1.1. In order to evaluate the integral

∫
∞

0
λ(u)Y (u)du,
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Figure 3.3: Example plot of a discrete cumulative hazard function

note that we can rewrite λ(ti) as

λ(ti) = Λ(ti) −Λ(ti−),

where Λ(t) is the cumulative hazard function. We’ll write as λ(u) as dΛ(u). Finally,

recall that because S(t) is right-continuous, Λ(t) is also right-continuous. We’ll also need

a bit of integration theory from Lebesgue-Stieltjies integrals. Suppose that G is a right-

continuous, monotone function on [0,∞) with countably many discontinuities at ai, and let

dG(ai) = G(ai) −G(ai−). Then for a measurable function F on [0,∞), the integral over a

set B

∫
B
F (x)dG(x) = ∑

i∣ai∈B
F (ai)dG(ai).

Using these results, the integral can be evaluated to

∫
∞

0
(Y (u))dΛ(u)du =

n

∑
j=1
λ(tj)Y (tj)

Let’s take the log of the expression to get a log-likelihood:

log fη(t1, . . . , tn, δ1, . . . , δn) =
n

∑
i=1
δi log(λη(ti)) −

n

∑
j=1
λη(tj)Y (tj) (3.5)

Taking the gradient with respect to λη(ti) gives

∇ log fη(t1, . . . , tn, δ1, . . . , δn) =
δi

λη(ti)
− Y (ti). (3.6)

Note that the Hessian is also diagonal, which implies asymptotic independence of λ(ti). This
is solved at

λ̂η(ti) =
δi

Y (ti)
(3.7)
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This gives an expression for Λ(t):

ΛNA(t) = ∑
i∣δi=1,ti≤t

1

Y (ti)
(3.8)

This also gives an expression for S(t):

SKM(t) = ∏
i∣δi=1,ti≤t

(1 − 1

Y (ti)
). (3.9)

This is also known as the Kaplan-Meier estimator. An alternative expression is:

SNA(t) = exp (−∑i∣δi=1,ti≤t
1

Y (ti)
) (3.10)

We can show that the cumulative hazard as implied by Equation (3.9) is asymptotically

equivalent to Equation (3.8). Given Equation (1.10)

ΛKM = − log
⎛
⎝ ∏
i∣δi=1,ti≤t

(1 − 1

Y (ti)
)
⎞
⎠

(3.11)

= − ∑
i∣δi=1,ti≤t

log(1 − 1

Y (ti)
) (3.12)

≈ ∑
i∣δi=1,ti≤t

1

Y (ti)
(3.13)

where the last line follows from the Taylor approximation of log(1 − x) ≈ −x when x ≈ 0.

3.1.1 Kaplan-Meier estimator standard error

In order to get the standard errors for the Kaplan-Meier estimator, we again use the Taylor

approximation above, but for x = λ(ti). To see why, we note that:

log ŜKM(t) = ∑
i∣ti≤t

log(1 − λ̂(ti)). (3.14)

The Taylor expansion for each term in the sum is:

log(1 − λ̂(ti)) ≈ log(1 − λ(ti)) −
1

1 − λ(ti)
(λ̂(ti) − λ(ti)) (3.15)

Then

Var (log(1 − λ̂(ti))) ≈
1

(1 − λ(ti))2
Var (λ̂(ti))

We can estimate the Var (λ̂(ti)) by treating λ̂(ti) as a binomial random variable, estimating

the probability parameter as λ̂(ti), and, subsequently the plug-in variance estimate is

λ̂(ti)(1 − λ̂(ti))
Y (ti)

.
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We again use the Taylor approximation:

log(SKM(t)) ≈ log(S(t)) + 1

S(t)
(SKM(t) − S(t)) (3.16)

which leads to

Var (log(SKM(t))) = 1

S(t)2
Var (SKM(t))

or

Var (SKM(t)) = Var (log(SKM(t)))S(t)2.

We use the plug-in estimator for S(t) here, so we get:

Var (SKM(t)) = Var (log(SKM(t))) (SKM(t))2.

Putting this all together along with the fact that λ(ti)
asymp
⊥⊥ λ(tj), we get:

Var (SKM(t)) = (SKM(t))2 ∑
i∣δi=1,ti≤t

λ̂(ti)(1 − λ̂(ti))
Y (ti)

.

Simplifying the expression λ̂(ti)(1−λ̂(ti))
Y (ti)

yields what is known as Greenwood’s formula:

Var (SKM(t)) = (SKM(t))2 ∑
i∣δi=1,ti≤t

δi

Y (ti)(Y (ti) − δi)
.
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3.1.2 Handling ties in the Nelson-Aalen estimator

We had assumed that no two events could occur at the same time, but for most real datasets

this isn’t realistic. A distinction must be made between a) assuming that ties are present

in the data because, despite the true events happening in continuous time and thus no two

events exactly coincide, the data have been rounded such that this exact ordering of events

is lost, or b) that the true events happen in discrete time, and so there are truly events that

co-occur.

In the continuous time scenario, O. Aalen et al. 2008 suggests using a modified estimator

for hazard at time ti when there are multiple δi = 1. Let di be the number of events observed

at time ti. Then the proposed estimator for λ̂(ti) is:

λ̂(ti) =
di−1
∑
j=0

1

Y (ti) − j
(3.17)

In discrete time the proposal is to use:

λ̂(ti) =
di

Y (ti)
(3.18)

3.1.3 Handling ties in the Kaplan-Meier estimator

It turns out, after some algebra, that using either Equation (3.17) or Equation (3.18) results

in the following tie-corrected estimator for the KM estimator:

ŜKM(t) = ∏
i∣di≥1,ti≤t

(1 − di

Y (ti)
) (3.19)

Greenwood’s formula is then

Var (SKM(t)) = (SKM(t))2 ∑
i∣di=1,ti≤t

di

Y (ti)(Y (ti) − di)
.

This is the more commonly known form.

3.2 Nonparametric tests

Now that we’ve derived the nonparametric estimator for the cumulative hazard function,

ΛNA(t) = ∑i∣δi=1,ti≤t
1

Y (ti)
, we may be interested in testing the hypothesis that two populations

have different cumulative hazard functions.

Intuitively it would make sense to compare the difference between the two cumulative

hazard functions up to some τ :

ΛNA
1 (τ) −ΛNA

2 (τ) (3.20)
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and if this difference were large relative to the standard error under the null hypothesis,

reject the null in favor of the alternative.

Let’s formalize this a bit more. If the null hypothesis is:

H0 ∶ λ1(t) = λ2(t)∀t ∈ [0, τ]

then we can represent this common hazard function at λ(t). Under the null, the nonpara-

metric estimator combines all of the event times into one dataset and estimates λ̂(t). Let

Y (t) = Y 1(t) + Y 1(t) be the total population at risk between the two samples. Let there

be n1 and n2 samples in each respective study set. Let t1 ≤ t2 ≤< ⋅ ⋅ ⋅ < tn1+n2 be the total

combined set of event times. Let di be the total number of failures occurring at time ti, and

let dij be the total number of failures occurring at time ti for sample j. Note that this could

be zero.

Then the Nelson-Aalen estimator, assuming discrete time ties, for the cumulative hazard

under the null is

Λ̂NA(τ) =
n1+n2

∑
i=1∣ti≤τ

di

Y (ti)
(3.21)

Then let the Nelson-Aalen estimator for the j-th cumulative hazard be

Λ̂NA(τ) =
n1+n2

∑
i=1∣ti≤τ

dij

Y j(ti)
(3.22)

Given the common index over ti we can compare the two sums more easily:

Zj(τ) =
n1+n2

∑
i=1∣ti≤τ

(
dij

Y j(ti)
− di

Y (ti)
) . (3.23)

We can weight the comparisons differently by adding a weighting factor that is a function of

t and j:

Zj(τ) =
n1+n2

∑
i=1∣ti≤τ

Wj(ti)(
dij

Y j(ti)
− di

Y (ti)
) . (3.24)

Crucially, this weighting function has the property that Wj(ti) = 0 when Y j(ti) = 0, because
the hazard rate estimator λ̂j(ti) is not defined in this case. Let’s rewrite the statistic Z(τ)
a bit differently to elucidate the statistical properties, assuming that Wj(ti) =W (ti)Y j(ti),
which satisfies the requirement that Wj(ti) = 0 when Y j(ti) = 0:

Zj(τ) =
n1+n2

∑
i=1∣ti≤τ

W (ti)Y j(ti)(
dij

Y j(ti)
− di

Y (ti)
) (3.25)

=
n1+n2

∑
i=1∣ti≤τ

W (ti)(dij − di
Y j(ti)
Y (ti)

) (3.26)
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Now, conditional on di, Y j(ti), Y (ti), dij are distributed as hypergeometric random variables.

Recall the definition of a hypergeometric random variable: It defines the distribution of

successes (in our case this is failures) in a sample size of n from a finite population of size

N where the total number of successes is K, with mean nKN . The analogy to our scenario is

dij is the number of failures in a samples of size Y j(ti) in a population size Y (ti) where the

total number of failures is di. Then

E [dij ∣ di, Y j(ti), Y (ti)] = di
Y j(ti)
Y (ti)

For notational convenience, let’s call Aij = dij −di Y j(ti)
Y (ti)

. Under the null hypothesis, the mean

of Zj(τ) is zero, because E [Aij ∣ di, Y j(ti), Y (ti)] = 0 so

E [Aij] = Edi,Y j(ti),Y (ti) [E [Aij ∣ di, Y j(ti), Y (ti)]] = 0.

We can also compute the variance using our result.

Var (Zj(τ)) = ∑
i

W (ti)2Var (Aij) + 2∑
i<k
W (ti)W (tj)Cov (Aij,Akj)

Given the hypergeometric distribution, we can read off the variance as

Var (Aij) = di
Y j(ti)
Y (ti)

(1 −
Y j(ti)
Y (ti)

) Y (ti) − di
Y (ti) − 1

Now let’s compute Cov (Aij,Akj), noting that i < k. We know that E [Aij] = 0, so we just

need to compute E [AijAkj]. We can use the tower property of expectation. First we need

to define something called the history, or the filtration, of the process. A filtration is an

increasing family of σ-algebras, {Fl,0 ≤ l < ∞} such that Fl ⊂ Fm for all l <m. This is a way

of formalizing the idea that as time progresses, information about events accrues. If an event

E ∈ Fl then E [1 (E) ∣ Fl] = 1 (E), because we’re conditioning on the full set of information,

and E is part of that information. It’s analogous to saying for two random variables X,Y ,

E [XY ∣X] =XE [Y ∣X]. Taking this approach below, we show that the covariance is zero.

Let Fk be the collection of information just before tk, which means, more formally that it is

Fk = σ{di1, di2, Y 1(ti), Y 2ti, i < k} (3.27)

Then

E [AijAkj] = E [E [AijAkj ∣ Fk]] (3.28)

= E [AijE [Akj ∣ Fk]] (3.29)

= 0. (3.30)
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Where the last line follows because

E [Akj ∣ Fk] = Edi,Y j(ti),Y (ti) [E [Akj ∣ Fk, di, Y j(ti), Y (ti)]] (3.31)

= 0 (3.32)

as we showed above. Thus,

Var (Zj(τ)) = ∑
i

W (ti)2Var (Aij) (3.33)

= ∑
i

W (ti)2 (di
Y j(ti)
Y (ti)

(1 −
Y j(ti)
Y (ti)

) Y (ti) − di
Y (ti) − 1

) (3.34)

Note that, due to Aij being mean zero, we have that

Var (Aij) = Edi,Y j(ti),Y (ti) [Var (Aij ∣ di, Y j(ti), Y (ti))] +Var (E [Aij ∣ di, Y j(ti), Y (ti)])

= Edi,Y j(ti),Y (ti) [Var (Aij ∣ di, Y j(ti), Y (ti))]

Then

Var (Aij) = Edi,Y j(ti),Y (ti) [Var (Aij ∣ di, Y j(ti), Y (ti))]

This means that we can construct an unbiased estimator for Var (Zj(τ)) by the following:

ˆVar (Zj(τ)) = ∑
i

W (ti)2Var (Aij ∣ di, Y (ti), Y j(ti))

and

E [ ˆVar (Zj(τ))] = ∑
i

W (ti)2E [Var (Aij ∣ di, Y (ti), Y j(ti))]

= ∑
i

W (ti)2Var (Aij)

= Var (Zj(τ))

We won’t go into the details yet, but it turns out that

Zj(τ)√
ˆVar (Zj(τ))

asympt.∼ Normal(0,1)

One could use this result to define a rejection region that is calibrated under the null.
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3.3 Confidence intervals

In lecture 5, we derived Greenwood’s formula for the variance of the Kaplan-Meier estimator.

If we wanted to construct asymptotic, point-wise confidence intervals for the KM estimator,

we can go about it in several ways. The most straightforward way to compute confidence

intervals is to directly use the estimated survival function at t0 and the standard error

estimator from Greenwood’s formula. Let σ̂(t) be
¿
ÁÁÀ ∑

i∣di=1,ti≤t

di

Y (ti)(Y (ti) − di)
.

Then our confidence interval, CKM, is

CKM = (ŜKM(t0) − z1−α/2σ̂ŜKM(t0), ŜKM(t0) + z1−α/2σ̂ŜKM(t0))

The issue with this confidence interval is that it is not guaranteed to be greater than zero

or less than 1, so we may have nonsensical results for upper and lower bounds. A solution

is to build a confidence set for a suitably transformed Kaplan Meier estimator, and use the

inverse transformation to enforce the natural [0,1] bounds. One option is to use the logit

transformation, another is to use the log-log transformation.

We’ll walk through the log-log transformation:

Note that we have the following result from lexture 5:

Var (log(ŜKM(t))) = 1

S(t)2
Var (ŜKM(t)) .

and

Var (log(ŜKM(t)) = ∑
i∣di=1,ti≤t

di

Y (ti)(Y (ti) − di)

Then

log(− log(ŜKM(t))) ≈ log(− log(S(t))) − 1

log(S(t))
(log(SKM(t)) − log(S(t)))

So

Var (log(− log(ŜKM(t)))) ≈ 1

log(S(t))2
Var (log(ŜKM(t))

or

SE(log(− log(ŜKM(t)))) ≈ 1

∣log(S(t))∣
σ̂(t)
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Let u = log(− logS(t)), û = log(− log(ŜKM(t))), and σ̂u = SE(log(− log(ŜKM(t)))). Then

ŜKM(t) = exp(−eû).

Note that exp(−eu) is a monotone decreasing function of its input, u. This means that for

a set [a, b]
a ≤ u ≤ b Ô⇒ exp(−ea) ≥ exp(−eu) ≥ exp(−eb).

We’ll take it as a given that asymptotically,

û − u
σ̂u

d→ N(0,1).

Then we can derive an alternative asymptotic confidence interval for the Kaplan-Meier es-

timator of survival at time t0 by transforming a confidence interval for u. Let z1−α/2 be the

1 − α/2 quantile of a standard normal distribution with CDF Φ, or

z1−α/2 = Φ−1(1 − α/2).

P (−z1−α/2 ≤
û − u
σ̂u
≤ z1−α/2) = P (û − σ̂uz1−α/2 ≤ u ≤ û + σ̂uz1−α/2)

= P (exp(−eû−σ̂uz1−α/2) ≥ exp(−eu) ≥ exp(−eû+σ̂uz1−α/2))

= P (exp(−eûe−σ̂uz1−α/2) ≥ exp(−eu) ≥ exp(−eûeσ̂uz1−α/2))

= P (exp(−eû)e
−σ̂uz1−α/2 ≥ exp(−eu) ≥ exp(−eû)e

σ̂uz1−α/2)

= P ((ŜKM(t))e
−SE(log(− log(ŜKM

(t))))z1−α/2 ≥ S(t)

≥ (ŜKM(t))e
SE(log(− log(ŜKM

(t))))z1−α/2).

So

P (S(t) ∈ ((ŜKM(t))e
SE(log(− log(ŜKM

(t))))z1−α/2
, (ŜKM(t))e

−SE(log(− log(ŜKM
(t))))z1−α/2)) asympt.= 1 − α

(3.35)

3.4 More on log-rank tests

I motivated the log-rank test by stating that we wanted to compare estimates of the hazard

function. Let’s do a quick derivation to show why this is the case: We start with the weighted

log-rank test as we have derived it:

Zj(τ) =
n1+n2

∑
i=1∣ti≤τ

W (ti)(dij − di
Y j(ti)
Y (ti)

) (3.36)
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We can express this in terms of hazard estimators λ̂j(ti) = dij

Y j(ti)
: Let’s let j ∈ {1,2}. Then

n1+n2

∑
i=1∣ti≤τ

W (ti)(dij − di
Y j(ti)
Y (ti)

) =
n1+n2

∑
i=1∣ti≤τ

W (ti)(
dijY (ti) − diY j(ti)

Y (ti)
)

=
n1+n2

∑
i=1∣ti≤τ

W (ti)(
dijY (ti) − (dij + dij′)Y j(ti)

Y (ti)
)

=
n1+n2

∑
i=1∣ti≤τ

W (ti)(
dijY j′(ti) − dij′Y j(ti)

Y (ti)
)

=
n1+n2

∑
i=1∣ti≤τ

W (ti)
Y j′(ti)Y j(ti)

Y (ti)
(

dij

Y j(ti)
−

dij′

Y j′(ti)
)

Thus we can see that Z1(τ) = −Z2(τ). Let’s rewrite this in terms of integrals over the positive

reals

n1+n2

∑
i=1∣ti≤τ

W (ti)
Y j′(ti)Y j(ti)

Y (ti)
(

dij

Y j(ti)
−

dij′

Y j′(ti)
) = ∫

∞

0
W (u)

Y j′(u)Y j(u)
Y (u)

(dΛ̂1(u) − dΛ̂2(u))

= ∫
∞

0
W (u)

Y j′(u)Y j(u)
Y (u)

d (Λ̂1(u) − Λ̂2(u))

A more general Lebesgue-Stieltjies theory will show that the integral above is well-defined.

More on this later...

Let’s say we’re going to test multiple groups for equality of hazard rates. Then we will

write the log-rank statistic like so, with n = ∑Jj=1 nj:

Zj(τ) =
n

∑
i=1∣ti≤τ

W (ti)(dij − di
Y j(ti)
Y (ti)

) (3.37)

The variance of Zj(τ) is as was derived. We can show, and I mentioned, that di1, . . . , diJ ∣
di, Y 1(ti), . . . , Y J(ti) is multivariate hypergeometric distributed. That means we can derive

the variance and the covariance for these random variables. I’ll spare the details here. Given

the result that in the two-group test, Z1(τ) = −Z2(τ), we might expect the Zj(τ) to be

linearly dependent. This is indeed the case, which we can see from the fact that the sum of

all Zj(τ) is zero. Then we might ask how do we construct a test statistic from a degenerate

random variable. The answer is that we choose J − 1 of the statistics, and it doesn’t matter

which statistics we choose. Given the covariance matrix Σ, we can construct a quadratic

form:

χ2 = (Z1(τ), Z2(τ), . . . , ZJ−1(τ))Σ−1(Z1(τ), Z2(τ), . . . , ZJ−1(τ))T (3.38)

which, under H0, is asymptotically distributed χ2 with J − 1 degrees of freedom.
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Let Z(τ) = (Z1(τ), Z2(τ), . . . , ZJ(τ))T and let Σ = Cov(Z(τ)). To show why it doesn’t

matter which groups we choose, imagine we have two matrices A ∈ RJ−1×J and B ∈ RJ−1×J

which, when left multiplying the vectorZ(τ) select subsets of the J − 1 groups. An example

of A for J = 3 might be:

⎡⎢⎢⎢⎢⎣

1 0 0

0 1 0

⎤⎥⎥⎥⎥⎦
(3.39)

Let both A and B be rank J − 1. We define χ2
A to be

χ2
A = (AZ(τ))T (AΣAT )−1AZ(τ) (3.40)

χ2
B = (BZ(τ))T (BΣBT )−1BZ(τ) (3.41)

As A and B are full-row-rank there exists an invertible matrix C such that B = CA. Then

χ2
B = (CAZ(τ))T (CAΣATCT )−1CAZ(τ) (3.42)

= Z(τ))TATCT (CT )−1(AΣAT )−1C−1CAZ(τ) (3.43)

= Z(τ))TAT (AΣAT )−1AZ(τ) (3.44)

= (AZ(τ))T (AΣAT )−1AZ(τ) (3.45)

= χ2
A (3.46)
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Chapter 4

Parametric and nonparametric

regression models

This chapter combines content from O. Aalen et al. 2008, Klein, Moeschberger, et al. 2003,

Harrell et al. 2001, Collett 1994, and Keener 2010.

Thus far we have dealt exclusively with simple univariate estimation. More often than

not, we will also have covariates associated with our failure time observations. Let the ob-

served failure data, be, as usualXi is time to failure, Ci is time to censoring, Ti =min(Xi,Ci),
is the observed event time, and δ = 1 (Xi ≤ Ci) is the censoring indicator. Suppose we also

have covariates for each individual i zi ∈ Rk. These could be age, sex at birth, comorbidi-

ties. Over a short enough timespan, these covariates can be considered fixed over time.

Other covariates, like blood pressure, or time since last colonoscopy, would be time varying

covariates, which we’ll denote as z(x)i.
Much of our study has been on the hazard function λ(t). We’ll consider this parameter-

ized by a vector of parameters θ, so we’ll write λ(t ∣ θ) for the hazard function. In order to

incorporate covariates into the hazard rate, we’ll work with relative risk regression, or

λi(t) = λ0(t ∣ θ)r(β,zi)

where r is a function R → R+. Note that this assumes that all individuals share a common

baseline hazard, λ0(t ∣ θ), and have time-invariant, individual relative risk contributions

r(β,zi). A common choice is that r(β,zi) ≡ exp(zTi β).
The function is called the relative risk function because when we compare the hazard

rates for two individuals i and j, the common baseline hazard drops out of the comparison:

λi(t)
λj(t)

= exp(zi)Tβ)/ exp(zTj β).
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Figure 4.1: Example of survival functions with proportional hazards

Of course, the above holds with general r(β,zi). Let’s see what this implies for the survival

function for i vs. j:

Si(t) = exp(−∫
t

0
ez

T
i βλ0(u ∣ θ)du)

= exp(−∫
t

0
λ0(u ∣ θ)du)

ez
T
i β

=
⎛
⎜
⎝
exp(−∫

t

0
λ0(u ∣ θ)du)

e
zTj β⎞
⎟
⎠

e
zTi β

e
zT
j
β

=
⎛
⎜
⎝
exp(−∫

t

0
λ0(u ∣ θ)du)

e
zTj β⎞
⎟
⎠

e
(zTi −z

T
j )β

= Sj(t)e
(zTi −z

T
j )β

What this means is that the survival curves never cross. To see why, note that Si(0) = Sj(0) =
1, and WLOG, suppose (zTi − zTj )β ≤ 0. Then Si(t) ≥ Sj(t) for all t. See Figure 4.1 for a

demonstration of proportional hazards. See Figure 4.1 for a demonstration of proportional

hazards and Figure 4.2 for a demonstration of nonproportional hazards.

Proportional hazards (or relative risk) models assume that the survival functions never

cross, which is a strong assumption.

Let’s do a simple example.

Example 4.0.1. Simple exponential regression The following example is adapted from Col-

lett 1994. Suppose we have individuals grouped into two groups, groups 1 and 2, and let zi
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Figure 4.2: Example of survival functions that do not adhere to proportional hazards

equal 1 for those in group 2 and 0 for those in group 1. Suppose further we have noninfor-

mative censoring, parameter separability, and exponentially distributed survival times with

common baseline hazard of λ, so we have observed the following dataset:

{(ti, δi, zi), i = 1, . . . , n}

Then the hazard rate for group 1 is λ, while the hazard in group 2 is λeβ. Let n1 = ∑i(1−zi)
and n2 = sumizi. Then the likelihood contribution for the individuals for whom zi = 0 is

∏
i∣zi=0

λδie−λti

and the likelihood contribution for individuals in group 2 is

∏
i∣zi=1
(λeβ)δie−λeβti

We can simplify this. Let r1 = ∑i(1 − zi)δi, and let r2 = ∑i ziδi. Let T1 = ∑i(1 − zi)ti, and
T2 = ∑i ziti. Then the joint likelihood may be written:

λr1e−λT1(λeβ)r2e−λeβT2 = λr1+r2e−λT1er2βe−λeβT2 .

Let ℓ(λ,β) be the log-likelihood function. Then the score equations are

∂

∂λ
ℓ(λ,β) ∶ r1 + r2

λ
− T1 − eβT2

∂

∂β
ℓ(λ,β) ∶ r2 − λeβT2
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solving these for the unknowns is

r1 + r2
T1 + eβT2

= λ
r2
λT2
= eβ

which simplifies to

λ̂ = r1
T1

êβ = T1/r1
T2/r2

= r2
T2

T1
r1

These estimates make sense: The first is the reciprocal of the average survival time for those

in Group 1, and the second is the ratio of the average survival times in each group.

We can show using Example 2.4.1 that both of these estimators converge a.s. to the true

values. r2
T2

a.s.→ λeβ, T1r1
a.s.→ 1

λ

Let’s find the asymptotic variance of the estimand β

∂

∂λ
( ∂
∂λ
ℓ(λ,ψ)) = −r1 + r2

λ2
(4.1)

∂

∂β
( ∂
∂λ
ℓ(λ,ψ)) = −eβT2 (4.2)

∂

∂β
( ∂
∂β

ℓ(λ,ψ)) = −λeβT2 (4.3)

Then the observed information matrix is

⎡⎢⎢⎢⎢⎣

r1+r2
λ2 eβT2

eβT2 λeβT2

⎤⎥⎥⎥⎥⎦
(4.4)

which has the inverse:

1
(r1+r2)eβT2

λ − e2βT 2
2

⎡⎢⎢⎢⎢⎣

λeβT2 −eβT2
−eβT2 r1+r2

λ2

⎤⎥⎥⎥⎥⎦
(4.5)

So the plug-in standard error for β is

¿
ÁÁÀ

r1+r2
λ2

(r1+r2)eβT2
λ − e2βT 2

2

40



Plugging in the MLEs gives

¿
ÁÁÁÁÀ

r1+r2
(r1/T1)2

(r1+r2)T1r2r1

r1/T1 − (T1r2r1
)2
=
√

r1 + r2
r1r2

We can use this expression to generate an asymptotic confidence interval for β:

P (β ∈ Cβ) = P (β ∈ (eβ̂ − z1−α/2
√

r1 + r2
r1r2

, eβ̂ + z1−α/2
√

r1 + r2
r1r2

))
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In the preceding example, we shied away from using the Fisher information because T2

was not easily accessible. But we can use the results from Example 2.4.1 to derive an exact

expression for the asymptotic sampling variance for the MLE.

Example 4.0.2. Continued example This is an expansion of the example in Collett 1994.

∂

∂λ
( ∂
∂λ
ℓ(λ,ψ)) = −r1 + r2

λ2
(4.6)

∂

∂β
( ∂
∂λ
ℓ(λ,ψ)) = −eβT2 (4.7)

∂

∂β
( ∂
∂β

ℓ(λ,ψ)) = −λeβT2 (4.8)

Using the results of Example 2.4.1, we know that

E [r1] = n1ECi
[1 − e−λCi] , E [r2] = n2ECi

[1 − e−λeβCi] ,andE [T2] = n2
1

λeβ
ECi
[1 − e−λeβCi]

Then the Fisher information is

⎡⎢⎢⎢⎢⎢⎣

n1ECi
[1−e−λCi]+n2ECi

[1−e−λeβCi]
λ2

1
λn2ECi

[1 − e−λeβCi]
1
λn2ECi

[1 − e−λeβCi] n2ECi
[1 − e−λeβCi]

⎤⎥⎥⎥⎥⎥⎦
(4.9)

Let E [ri1] = ECi
[1 − e−λCi] and E [ri2] = ECi

[1 − e−λeβCi]. We know the asymptotic variance

of the MLE is the inverse of the Fisher information matrix. The inverse is:

λ2

n1n2E [ri1]E [ri2]

⎡⎢⎢⎢⎢⎣

n2E [ri2] −n2E [ri2] /λ
−n2E [ri2] /λ n1E[ri1]+n2E[ri2]

λ2

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

λ2

n1E[ri1] − λ
n1E[ri1]

− λ
n1E[ri1]

n1E[ri1]+n2E[ri2]
n1n2E[ri1]E[ri2]

⎤⎥⎥⎥⎥⎦
(4.10)

So the asymptotic standard error for β is

¿
ÁÁÁÀ

n1ECi
[1 − e−λCi] + n2ECi

[1 − e−λeβCi]
n1n2ECi

[1 − e−λCi]ECi
[1 − e−λeβCi]

4.1 Asymptotic interlude

As you’ve already no doubt gathered, many of the results for inference and hypothesis

testing in survival analysis rely on asymptotic normality of the MLE. Before we get too

much further into the quarter, I thought it would be a good idea to review the asymptotic

results for maximum likelihood. This outline of results is from Keener 2010.

Let Xi, i = 1,2, . . . be distributed i.i.d. with density fθ where θ ∈ Rp. We suppose that the

support of Xi does not depend on θ, and that our MLE’s are consistent for θ. This is pretty

mild, and only requires that likelihood ratios are integrable and our model is identifiable.
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Given these conditions, we can expand the gradient of the log-likelihood evaluated at the

MLE ℓ(θ̂) around the true parameter value θ† in a one-term Taylor expansion:

∇θℓ(θ) ∣θ=θ̂n= ∇θℓ(θ) ∣θ=θ† +∇
2
θℓ(θ) ∣θ=θ̃n (θ̂n − θ

†)

where θ̃n is a point on the chord between θ̂n and θ†. We can rearrange this by noting that

∇θℓ(θ) ∣θ=θ̂n= 0, and solving for θ̂n − θ†:

∇θℓ(θ) ∣θ=θ† +∇2
θℓ(θ) ∣θ=θ̃n (θ̂n − θ

†) = 1√
n
∇θℓ(θ) ∣θ=θ† +

1√
n
∇2
θℓ(θ) ∣θ=θ̃n (θ̂n − θ

†)

= 1√
n
∇θℓ(θ) ∣θ=θ† +

√
n

n
∇2
θℓ(θ) ∣θ=θ̃n (θ̂n − θ

†)

= 1√
n
∇θℓ(θ) ∣θ=θ† +

1

n
∇2
θℓ(θ) ∣θ=θ̃n

√
n(θ̂n − θ†)

Solving for
√
n(θ̂n − θ†) gives

√
n(θ̂n − θ†) = (− 1

n
∇2
θℓ(θ) ∣θ=θ̃n)

−1 1√
n
∇θℓ(θ) ∣θ=θ†

Writing out the expressions,

1√
n
∇θℓ(θ) ∣θ=θ† , ∇2

θℓ(θ) ∣θ=θ̃n

shows that we will be able to use multivariate CLT, which we’ll take as given and the weak

law of large numbers (also taken for granted). Recall the multivariate CLT:

Theorem 4.1.1. Multivariate CLT, (Keener 2010) Let X1,X2, . . . be i.i.d random vectors in

Rk with a common mean E [Xi] = µ and common covariance matrix Σ = E [(Xi − µ)(Xi − µ)T ].
If X̄ = ∑

n
i=1Xi

n , then
√
n(X̄ − µ) d→ Normal(0,Σ)

Rewriting each of the terms as explicit sums:

1√
n
∇θℓ(θ) ∣θ=θ† =

√
n
1

n

n

∑
i=1
(∇θ log fθ(Xi)) ∣θ=θ† (4.11)

(− 1
n
∇2
θℓ(θ) ∣θ=θ̃n)

−1 = (− 1
n

n

∑
i=1
(∇2

θ log fθ(Xi)) ∣θ=θ̃)
−1

(4.12)

By the multivariate central limit (MCLT) theorem, Equation (4.11) converges in distribution

to

√
n
1

n

n

∑
i=1
(∇θ log fθ(Xi)) ∣θ=θ†

d→ N(0,E [(∇θ log fθ(Xi)) ∣θ=θ† (∇θ log fθ(Xi)) ∣Tθ=θ†])
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Note that I(θ†) = E [(∇θ log fθ(Xi)) ∣θ=θ† (∇θ log fθ(Xi)) ∣Tθ=θ†]. We can rewrite the matrix in

Equation (4.12) as:

− 1
n
∇2
θℓ(θ) ∣θ=θ̃n =

1

n

n

∑
i=1
(∇2

θ log fθ(Xi)) ∣θ=θ† −
1

n

n

∑
i=1
(∇2

θ log fθ(Xi)) ∣θ=θ̃ −
1

n

n

∑
i=1
(∇2

θ log fθ(Xi)) ∣θ=θ†

(4.13)

If we have conditions on the matrix of second derivatives, like a Lipschitz condition almost

everywhere:

sup
k,j
∣(∇2

θ log fθ(Xi) ∣θ=x −∇2
θ log fθ(Xi) ∣θ=y)k,j ∣

a.e.
≤ M ∥x − y∥

Then

∥ 1
n

n

∑
i=1
(∇2

θ log fθ(Xi)) ∣θ=θ† −
1

n

n

∑
i=1
(∇2

θ log fθ(Xi)) ∣θ=θ̃∥ = ∥
1

n

n

∑
i=1
(∇2

θ log fθ(Xi)) ∣θ=θ† −(∇2
θ log fθ(Xi)) ∣θ=θ̃∥

(4.14)
a.e.
≤ M1p×p ∥θ̃n − θ†∥ (4.15)
p→ 0p×p. (4.16)

where the last line follows from the consistency of θ̂n and that θ̃n lies on the chord between

θ̂n and θ†. Thus, by the Weak Law of Large Numbers and the continuous mapping theorem

Theorem 4.1.2. Continuous mapping theorem For a sequence of random variables Xn
p→X

and a continuous function g on a set C such that P (X ∈ C) = 1, then:

g(Xn)
p→ g(X) (4.17)

We can see that the following holds

− 1
n
∇2
θℓ(θ) ∣θ=θ̃n =

1

n
∇2
θℓ(θ) ∣θ=θ† −

1

n
∇2
θℓ(θ) ∣θ=θ̃n −

1

n
∇2
θℓ(θ) ∣θ=θ† (4.18)

p→ EX1∼f†
θ
[−(∇2

θ log fθ(X1)) ∣θ=θ†] (4.19)

Given that we’ve shown:

1√
n
∇θℓ(θ) ∣θ=θ†

d→ N(0,E [(∇θ log fθ(Xi)) ∣θ=θ† (∇θ log fθ(Xi)) ∣Tθ=θ†]) (4.20)

(− 1
n
∇2
θℓ(θ) ∣θ=θ̃n)

−1 p→ EX1∼f†
θ
[−(∇2

θ log fθ(X1)) ∣θ=θ†] (4.21)

we can use Slutsky’s theorem + multivariate normal theorey to derive the limiting distribu-

tion of the product of these sums
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Theorem 4.1.3. Slutsky’s theorem For Xn
d→X, and Yn

p→ Y

YnXn
d→ Y X (4.22)

Xn + Yn
d→ Y +X (4.23)

Thus by Equation (4.22)

(− 1
n
∇2
θℓ(θ) ∣θ=θ̃n)

−1 1√
n
∇θℓ(θ) ∣θ=θ†

d→

N (0,E [−(∇2
θ log fθ(X1)) ∣θ=θ†]

−1E [(∇θ log fθ(Xi)) ∣θ=θ† (∇θ log fθ(Xi)) ∣Tθ=θ†] (E [−(∇
2
θ log fθ(X1)) ∣θ=θ†]

−1)
T
)

Under the assumption that our model is correct, we conclude that

EX1∼f†
θ
[−(∇2

θ log fθ(X1)) ∣θ=θ†] = I(θ†) (4.24)

so, assuming that the Fisher information is invertible, again by the continuous mapping

theorem we conclude

(− 1
n
∇2
θℓ(θ) ∣θ=θ̃n))

−1 p→ I(θ†)−1. (4.25)

Furthermore,

E [(∇θ log fθ(Xi)) ∣θ=θ† (∇θ log fθ(Xi)) ∣Tθ=θ†] = I(θ
†) (4.26)

so let Y =
√
n(θ̂n − θ†) so Y is asymptotically multivariate normal, then just using standard

results for variance covariance of random vectors,

E [−(∇2
θ log fθ(X1)) ∣θ=θ†]−1E [(∇θ log fθ(Xi)) ∣θ=θ† (∇θ log fθ(Xi)) ∣Tθ=θ†] (E [−(∇2

θ log fθ(X1)) ∣θ=θ†]−1)
T

= I(θ†)−1I(θ†)I(θ†)−1

= I(θ†)−1

Putting this all together shows that

√
n(θ̂n − θ†) d→ N(0,I(θ†)−1)

Estimators of variance-covariance matrix

In the previous section, we encountered several consistent estimators of the variance covari-

ance matrix:

− 1
n
∇2
θℓ(θ) ∣θ=θ†

p→ I(θ†)

1

n

n

∑
i=1
(∇θ log fθ(Xi)) ∣θ=θ† (∇θ log fθ(Xi)) ∣Tθ=θ†

p→ I(θ†)
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These expressions assume that our inferential model matches the data generating model. In
the event our inferential model is different than the true data generating model, it can be
shown that the scaled MLE converges asymptotically to

√
n(θ̂n − θ†) d→N (0,E [−(∇2

θ log fθ(X1)) ∣θ=θ†]−1E [(∇θ log fθ(Xi)) ∣θ=θ† (∇θ log fθ(Xi)) ∣Tθ=θ†]E [−(∇2
θ log fθ(X1)) ∣θ=θ†]−1)

where the key difference is that θ† is no longer the parameter for the true data generating

process, but is instead the parameter the minimizes the KL divergence between the assumed

inferential model and the true distribution generating the data.

Thus, the following sandwich estimator for the variance covariance matrix is often pre-

ferred over either of the above expressions:

Σ̂R = (−
1

n
∇2
θℓ(θ) ∣θ=θ̂)

−1 1

n

n

∑
i=1
(∇θ log fθ(Xi)) ∣θ=θ̂ (∇θ log fθ(Xi)) ∣Tθ=θ̂ (−

1

n
∇2
θℓ(θ) ∣θ=θ̂)

−1

(4.27)
p→ Var (

√
n(θ̂n − θ†)) (4.28)

where θ̂ is the MLE.

4.1.1 Asymptotic confidence intervals

For the most part, we’ll be concerned with univariate confidence intervals, but in multivariate

models like the Weibull distribution we’ll need to compute the full inverse of the Fisher

information. WLOG, let the index of the parameter of interest be 1, so the asymptotic

variance of our MLE for the parameter of interest is σ2
1(θ†) = I(θ†)−11,1. We can also define

σ2
1(θ̂) = I(θ̂)−11,1.

I’ll also ditch the n subscript and just let θ̂ be our MLE based on n observations. By

Equation (4.17),

σ2
1(θ̂)

σ2
1(θ†)

p→ 1.

This allows us to use a plug-in estimator for I(θ†)−1, I(θ̂)−1.
√
n(θ̂1 − θ†

1)
σ1(θ̂)

= σ1(θ
†)

σ1(θ̂)

√
n(θ̂1 − θ†

1)
σ1(θ†)

d→ N(0,1)

Using Equation (4.22), we can create an asymptotic confidence interval by noting that:

P (
√
n(θ̂1 − θ†

1)
σ1(θ̂)

≤ x) = Φ(x),
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where Φ(x) is the CDF a normal distribution with zero mean and unit variance.

Then

P (
√
n(θ̂1 − θ†

1)
σ1(θ̂1)

∈ (−z1−α/2, z1−α/2)) = P (θ†
1 ∈ (θ̂1 − z1−α/2

σ1(θ̂1)√
n

, θ̂1 + z1−α/2
σ1(θ̂1)√

n
))

4.1.2 Asymptotic tests

Wald test

The Wald test is derived directly from the asymptotic distribution of the MLE. Under the

null hypothesis θ† = θ0, the test statistic:

√
n(θ̂n − θ0)

d→ N(0,I(θ0)−1)

so

n(θ̂n − θ0)TI(θ0)(θ̂n − θ0) ∼ χ2(p)

This follows from the simple fact that if a random vector in Rn, Z, is distributed multivariate

normal, or Z ∼ N(0,Σ), then Σ−1/2Z ∼ N(0, I), so ZTΣ−1/2Σ−1/2Z = ∑ni=1X2
i where Xi ∼

N(0,1).

Rao’s score test

In our proof of the asymptotic distribution of the MLE, we used the fact that

√
n
1

n

n

∑
i=1
(∇θ log fθ(Xi)) ∣θ=θ†

d→ N(0,I(θ†)).

This idea can be used to derive the Rao’s Score test, which uses the fact that under H0 ∶ θ ∈
Θ0, the gradient evaluated at the restricted MLE (i.e. the MLE restricted to the parameter

space Θ0) is nearly zero, and we can recover a similar limiting distribution. As above let

1√
n
∇θℓ(θ) ∣θ=θ†=

√
n
1

n

n

∑
i=1
(∇θ log fθ(Xi)) ∣θ=θ†

Assuming that under the null distribution the restrited MLE θ̂0 is consistent for θ† ∈ Θ0,

then
1√
n
∇θℓ(θ) ∣θ=θ̂0

d→ N(0,I(θ†))

The Score test statistic is:

TS = (
1√
n
∇θℓ(θ) ∣θ=θ̂0)

T

I(θ̂0)−1
1√
n
∇θℓ(θ) ∣θ=θ̂0

This test statistic is distribution χ2(p) under H0.
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Likelihood ratio test

The LRT comes from a two-term asymptotic expansion of the log-likelihood, as opposed to

the one term expansion:

−ℓ(θ0) = −ℓ(θ̂) − ∇θℓ(θ) ∣θ=θ̂ (θ̂ − θ0) −
1

2
(θ̂ − θ0)T∇2

θℓ(θ) ∣θ=θ̃ (θ̂ − θ0)

ℓ(θ̂) − ℓ(θ0) = −
1

2
(θ̂ − θ0)T∇2

θℓ(θ) ∣θ=θ̃ (θ̂ − θ0)

= 1

2
(
√
n(θ̂ − θ0))T

−∇2
θℓ(θ) ∣θ=θ̃
n

(
√
n(θ̂ − θ0))

As before,
√
n(θ̂ − θ0)

d→ N(0,I(θ0)−1)

and

−
∇2
θℓ(θ) ∣θ=θ̃
n

p→ I(θ0)

so

2(ℓ(θ̂) − ℓ(θ0))
d→ χ2(p)
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For all of the prior example, a convenient estimator for the Fisher information is the

average of the observed information. The observed information is just the negative of the

matrix of second derivatives of the log-likelihood:

−∇2
θℓ(θ) = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2

∂2θ1
ℓ(θ) ∂2

∂θ1∂θ2
ℓ(θ) . . . ∂2

∂θ1∂θp
ℓ(θ)

∂2

∂θ2∂θ1
ℓ(θ) ∂2

∂2θ2
ℓ(θ) . . . ∂2

∂θ2∂θp
ℓ(θ)

⋮ ⋮ ⋱ ⋮
∂2

∂θp∂θ1
ℓ(θ) ∂2

∂θp∂θ2
ℓ(θ) . . . ∂2

∂θp∂θp
ℓ(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.29)

This is often denoted as

i(θ) ≡ −∇2
θℓ(θ).

Replacing ℓ(θ) = ∑i log fθ(Xi) and using the fact that derivatives are linear operators:

i(θ) = −∑
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2

∂2θ1
log fθ(Xi) ∂2

∂θ1∂θ2
log fθ(Xi) . . . ∂2

∂θ1∂θp
log fθ(Xi)

∂2

∂θ2∂θ1
log fθ(Xi) ∂2

∂2θ2
log fθ(Xi) . . . ∂2

∂θ2∂θp
log fθ(Xi)

⋮ ⋮ ⋱ ⋮
∂2

∂θp∂θ1
log fθ(Xi) ∂2

∂θp∂θ2
log fθ(Xi) . . . ∂2

∂θp∂θp
log fθ(Xi)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.30)

we can see that the natural estimator of I(θ) is the average observed information, which

does indeed converge in probability to the Fisher information

1

n
i(θ) p→ I(θ).

Of course, typically we won’t know θ (unless we’re evaluating i(θ) at θ0), so we use the

plug-in estimator, or i(θ̂n) which still converges in probability to the Fisher information:

1

n
i(θ̂n)

p→ I(θ).

4.1.3 Tests in terms of observed information

When we use observed information in place of the Fisher information, the Wald and Score

tests look a bit different:

Wald test with the observed information

n(θ̂n − θ0)T
1

n
i(θ̂n)(θ̂n − θ0) = (θ̂n − θ0)T i(θ̂n)(θ̂n − θ0)

asympt.∼ χ2(p)
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Score test with the observed information

TS = (
1√
n
∇θℓ(θ) ∣θ=θ̂0)

T

( 1
n
i(θ̂0))−1

1√
n
∇θℓ(θ) ∣θ=θ̂0

= ( 1√
n
∇θℓ(θ) ∣θ=θ̂0)

T

n(i(θ̂0))−1
1√
n
∇θℓ(θ) ∣θ=θ̂0

= (∇θℓ(θ) ∣θ=θ̂0)
T
i(θ̂0)−1∇θℓ(θ) ∣θ=θ̂0

4.1.4 Composite tests

This section is an expansion of Appendix B in Klein, Moeschberger, et al. 2003.

We can modify all of our tests to accommodate testing a subset of the parameters.

Typically we’ll have a subset of our parameter vector, let’s call it ψ, that we’re interested in,

and we have another subset, ϕ, that are nuisance parameters. In the Example 4.0.1, we’ll

likely be interested in testing if β ≠ 0, and thus we won’t care about testing λ.

Let’s let θ = (ψ,ϕ), and let θ ∈ Rp so ψ ∈ Rk, k < p, ϕ ∈ Rp−k. Our null hypothesis will be:

H0 ∶ ψ = ψ0.

Let ϕ̂(ψ0) be the MLE for the nuisance parameter with ψ fixed under the null hypothesis.

We’ll also partition the information matrix into a 2 by 2 block matrix:

I(ψ,ϕ) =
⎡⎢⎢⎢⎢⎣

E [−∇2
ψ log fθ(X1)] E [−∇2

ψ,ϕ log fθ(X1)]
E [−∇2

ψ,ϕ log fθ(X1)] E [−∇2
ϕ log fθ(X1)]

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

Iψ,ψ Iψ,ϕ
ITψ,ϕ Iϕ,ϕ

⎤⎥⎥⎥⎥⎦
The inverse can also be partitioned into a 2 by 2 block matrix:

I(ψ,ϕ)−1 =
⎡⎢⎢⎢⎢⎣

Iψ,ψ Iψ,ϕ

(Iψ,ϕ)T Iϕ,ϕ

⎤⎥⎥⎥⎥⎦
The expression for Iψ,ψ can be found from the block matrix inversion formula:

Iψ,ψ = I−1ψ,ψ + I−1ψ,ψIψ,ϕ (Iϕ,ϕ − ITψ,ϕI−1ψ,ψIψ,ϕ)
−1 ITψ,ϕI−1ψ,ψ (4.31)

= (Iψ,ψ − Iψ,ϕI−1ϕ,ϕITψ,ϕ)
−1

(4.32)

All of these results hold for the observed information, i(ψ,ϕ).

Composite Wald test

Again using normal distribution theory, we can derive the Wald test with the observed

information:
√
n(ψ̂n − ψ0)

d→ N(0,Iψ,ψ).
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The Wald test statistic is then:

TW =
√
n(ψ̂n − ψ0)T (Iψ,ψ)

−1 (ψ̂n − ψ0)
√
n

Using the appropriate transformation for the observed information in place of the Fisher

information, we get

TW = (ψ̂n − ψ0)T (iψ,ψ)
−1 (ψ̂n − ψ0)

d→ χ2
k (4.33)

Composite Score test

The composite score test is a bit more complicated. The joint asymptotic distribution of the

score is:
√
n
1

n
∇(ψ,ϕ)ℓ(ψ,ϕ) ∣ψ=ψ̂0,ϕ=ϕ̂0

d→ N
⎛
⎝
0,

⎡⎢⎢⎢⎢⎣

Iψ,ψ Iψ,ϕ
ITψ,ϕ Iϕ,ϕ

⎤⎥⎥⎥⎥⎦

⎞
⎠

But when we have a nuisance parameter, under the null distribution we solve the score

equations

∇ϕℓ(ψ0, ϕ) = 0.

This means the distribution for
√
n 1
n∇ψℓ(ψ,ϕ) ∣ψ=ψ0,ϕ=ϕ̂(ψ0) needs to condition on the score

equations for ψ being zero.

√
n
1

n
∇ψℓ(θ) ∣ψ=ψ0,ϕ=ϕ̂(ψ0)

d→ N(0,Iψ,ψ − Iψ,ϕI−1ϕ,ϕITϕ,ψ).

The test statistic is then

n−1/2∇ψℓ(θ) ∣ψ=ψ0,ϕ=ϕ̂(ψ0) (Iψ,ψ − Iψ,ϕI
−1
ϕ,ϕITϕ,ψ)

−1
n−1/2∇ψℓ(θ) ∣ψ=ψ0,ϕ=ϕ̂(ψ0)

as we showed in Equation (4.32), the inverse matrix is the same as Iψ,ψ, so, subbing in our

observed information matrix again, we get the final

TS = ∇ψℓ(θ) ∣ψ=ψ0,ϕ=ϕ̂(ψ0) i(ψ0, ϕ̂(ψ0))ψ,ψ∇ψℓ(θ) ∣ψ=ψ0,ϕ=ϕ̂(ψ0)

which is asymptotically distributed as χ2
k.

Composite likelihood ratio test

The composite likelihood ratio test is similar to the likelihood ratio test:

TLR = 2(ℓ(ψ̂, ϕ̂) − ℓ(ψ0, ϕ̂(ψ0)))

and this is again asymptotically distributed as χ2
k
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Example 4.1.1. Continued relative risk example Suppose we are interested in testing the

hypothesis H0 ∶ β = 0 vs Ha ∶ β ≠ 0.
Recall the definitions of r1, r2, T1, T2:

r1 =
n

∑
i=1
(1 − zi)δi T1 =

n

∑
i=1
(1 − zi)ti

r2 =
n

∑
i=1
ziδi T2 =

n

∑
i=1
ziti

We showed in Example 4.0.1 that the log-likelihood was:

ℓ(λ,β) = (r1 + r2) logλ − λT1 + r2β − λeβT2 (4.34)

The score equations are

∂

∂λ
ℓ(λ,β) ∶ r1 + r2

λ
− T1 − eβT2

∂

∂β
ℓ(λ,β) ∶ r2 − λeβT2

and the matrix of second derivatives of the log-likelihood with respect to λ,β, also known

as the observed information, is

∇2
λ,βℓ(λ,β) =

⎡⎢⎢⎢⎢⎣

r1+r2
λ2 eβT2

eβT2 λeβT2

⎤⎥⎥⎥⎥⎦
(4.35)

The unrestricted MLE, (i.e. the MLE under the alternative hypothesis), is:

λ̂ = r1
T1

êβ = r2
T2

T1
r1

Under the null hypothesis that β = 0, we have the restricted likelihood:

ℓ(λ,β = 0) = (r1 + r2) logλ − λT1 − λT2 (4.36)

which can be differentiated with respect to λ, set to zero, and solved for λ:

λ̂0 =
r1 + r2
T1 + T2

(4.37)

The inverse of the observed information evaluated at the unrestricted MLE was shown to be

r1 + r2
r1r2

(4.38)
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The inverse of the observed information is:

Î−1(λ,β) = 1
(r1+r2)eβT2

λ − e2βT 2
2

⎡⎢⎢⎢⎢⎣

λeβT2 −eβT2
−eβT2 r1+r2

λ2

⎤⎥⎥⎥⎥⎦
(4.39)

which when the 2,2 element is evaluated at the λ̂0, or

Î−1(λ̂0,0)2,2 =
(T1 + T2)2
(r1 + r2)T1T2

Now for the test statistics:

• Likelihood ratio test: After some algebra, we get

TLR = 2r1 (log (
r1
T1
) − log ( r1 + r2

T1 + T2
)) + 2r2 (log (

r2
T2
) − log ( r1 + r2

T1 + T2
))

• Wald test: The test statistic is:

TW = (log
r2/T2
r1/T1

)
2
r1r2
r1 + r2

.

• Score test The starting test statistic is:

TS = (r2 − (r1 + r2)
T2

T1 + T2
)
2 (T1 + T2)2
(r1 + r2)T1T2

.

This is sort of interesting because it looks a bit like the log-rank statistic! T2
T1+T2 is a

bit like the proportion of time at risk the second group experienced, and the expected

total failures in the second group is this proportion multiplied by the total failures in

both groups. It’s not too hard to see why you might want to reject the null that β = 0
if this statistic were large. This simplifies to

TS =
(T1r2 − T2r1)2
(r1 + r2)T1T2

.

For an observed dataset of r1 = 10, r2 = 12, T1 = 25, T2 = 27, they all yield values around 0.06,

which is far below the critical value of 3.84, which is the 95th quantile from a χ2
1.

53



4.2 More on parametric regression models

Information is from Collett 1994, Harrell et al. 2001, O. O. Aalen 1988, O. Aalen et al. 2008.

4.3 Weibull regression

A common parametric proportional hazards model is the Weibull, which we encountered

way back in lecture 2. The baseline hazard has functional form:

λ0(t ∣ α, γ) = γαtα−1.

so the full regression model has the form

λi(t ∣ α, γ,β) = γαtα−1 exp(zTi β),

with survival function:

S(t) = exp(−γtα exp(zTi β))

The interesting thing about the Weibull is that it isn’t just a parametric model for survival

time; it can be justified using extreme value theory as the minimum of iid nonnegative

random variables. Aalen writes in O. O. Aalen 1988:

Hence, if cancer may result from one of the first cells to undergo malignant

transformation, then the time to appearance of cancer might very well follow a

Weibull distribution, when lime is measured from an appropriate point. This

principle has more general validity. An individual is subject to the risk of several

different causes of death and the one which first causes fatality determines the

life time. Hence the life time might be supposed to follow an extreme distribution

for each individual.

Model fit check

For any survival model the following identity holds:

S−1(S(t)) = t.

Thus an effective model check is to use a nonparametric estimate of the survival function,

either ŜKM(t) or ŜNA(t), apply the parametric form of S−1θ to the nomnparamtetric survival

function estimate, and to plot this function against t. The graph should be roughly linear

in t.
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Example 4.3.1. Weibull model check Assuming Xi ∼ Weibull(γ,α), the survival function

is

S(t) = exp(−γtα).

The inverse function is found as follows:

p = exp(−γtα)

− log p = γtα

(− log p
γ
)1/α = t

Then we can check the following plot: Under noninformative sampling with observed data

(ti, di), i = 1, . . . , n, ŜKM(t) = ∏i∣ti≤t(1 −
di
Y (t)) is the nonparametric estimator of the survival

function. a plot of

(− log Ŝ
KM(t)
γ

)1/αv.s.t

should be roughly linear.

Another implication in the Weibull distribution case case is the following:

S(t) = exp(−γtα) Ô⇒ log(− log p) = log(γ) + α log(t).

This leads to an alternative way to do a model check:

log(− log ŜKM(t))v.s. log(t)

should be roughly linear with slope α.

4.3.1 Parametric proportional hazards models

Recall our definition of proportional hazards employing an exponential function with zi ∈ Rk:

λ(t ∣ zi) = λ0(t ∣ θ) exp(βTzi) (4.40)

This implies the following properties for our model:

logλ(t ∣ zi) = logλ0(t ∣ θ) +βTzi (4.41)

logΛ(t ∣ zi) = logΛ0(t ∣ θ) +βTzi (4.42)

This means that the predictors act linearly on the log scale for both the hazard ratio and

the cumulative hazard, and that the effect of the predictors is constant over time.
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The interpretation of coefficients is as the change in the log hazard, or log cumulative

hazard:

βj = logλ(t ∣ z1, . . . zj−1, zj + 1, zj+1, . . . zk) − logλ(t ∣ z1, . . . zj−1, zj, zj+1, . . . zk).

Alternatively, we have

eβj =
λ(t ∣ z1, . . . zj−1, zj + 1, zj+1, . . . zk)
λ(t ∣ z1, . . . zj−1, zj, zj+1, . . . zk)

.

Increasing zj by 1 has the effect of increasing the hazard of an event by eβj .

As discussed previously and shown in Figure 4.1, When we have a single categorical

predictor, we can assess the validity of proportional hazards by plotting the log(− log) of
the KM estimate of survival within each subgroup, and determining if the lines are roughly

linear in log t and if they are parallel. If they are not parallel, but are straight, this may be

an indication that one could fit separate the groups with separate shape, or α, parameters.

4.3.2 Testing for proportional hazards

Following Collett 1994, in the Weibull model we may test the proportional hazards assump-

tion by fitting a more flexible model and using a composite likelihood ratio test. Suppose

we have patients categorized into 3 age groups, and we use dummy coding for our design

matrix:

Group Predictors

Youngest group zi = (0,0)T

Middle group zi = (1,0)T

Oldest group zi = (0,1)T

and we want to test whether fitting the following proportional hazards Weibull regression

model:

Xi ∼Weibull(γeβT zi , α)

is sufficient. An alternative model that allows for hazards that are not proportional is

Xi ∼Weibull(γeβT zi , αeθ
T zi)

Note that this alternative model is equivalent to fitting separate Weibull models to each

group. Then the null hypothesis we’d like to test is whether θ1 = θ2 = 0. We can use the

composite likelihood ratio test to determine whether the data contradict this null hypothesis.

The test statistic would be distributed as χ2
2 given the constraints in the null hypothesis.
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The test statistic in the case where we fit separate models to each subgroup is

2(ℓ1(ψ̂1, ϕ̂1) + ℓ2(ψ̂2, ϕ̂2) + ℓ3(ψ̂3, ϕ̂3) − ℓ(ψ0, ϕ̂(ψ0)))

where ℓj(ψ̂j, ϕ̂j), j = 1,2,3 is the log-likelihood from the fitted Weibull model to each age

group.

4.3.3 Accelerated failure time formulation

There is an alternative way to specify the Weibull model, wherein we model the log of the

survival times as being a linear function of covariates.

log(Xi) = µ + zTi η + σϵi

Let ϵi be Gumbel distributed with a probability density function

f(ϵ) = exp(ϵ − eϵ)

If we let ν = eϵ, then we can compute the density over ν. ϵ(ν) = log(ν). f(ν) = f(ϵ(ν)) ddν ϵ(ν)

exp(log(ν) − elog(ν))/ν = e−ν (4.43)

This shows that eϵ ∼ Exponential(1). Now we can write the survival function of Xi:

S(t) = P (Xi > t)

= P (log(Xi) > log(t))

= P (µ + zTi η + σϵi > log(t))

= P (ϵi > (log(t) − µ − zTi η)/σ)

= P (eϵi > exp(log(t) − µ − zTi η)1/σ)

= exp (− exp(log(t) − µ − zTi η)1/σ)

= exp (−t1/σe−µ/σ exp(zTi (−η/σ)))

So we can see the following correspondences between our parameters for the log-linear model

and the original proportional hazards model:

α = 1

σ

γ = e−µ/σ

β = −η/σ

In general, the correspondence between the model for the log-failure time and the pro-

portional hazards will not hold, but it does in the Weibull model.
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4.4 AFT models

This information is from Chapter 12 in Klein, Moeschberger, et al. 2003. Generally, AFT

models are specified by modeling the survival function as follows:

S(t ∣ z) = S0(t exp(θTz))

= P (Xi > t exp(θTz))

= P ( Xi

exp(θTz)
> t)

where S0 is the survival function for an individual with z = 0. Thus, we take a population

model for S, S0, and for an individual with covariates z, and exp(θTz) > 1, survival time

is shrunk towards zero. We might also say that for an individual with exp(θTz), their

probability of survival at time t is as if they were an individual with a survival function

evaluated at t0 = t exp(θTz). Recall that the survival function and the hazard function are

related via the following equation:

− ∂
∂t

log(S(t)) = λ(t).

Note that when S(t) = S(g(t)) for a known differentiable function g(t), the following will

hold:

− ∂
∂t

logS(g(t)) = −( ∂
∂g

log(S(g))) ∣g=g(t)
∂

∂t
g(t) Ô⇒ − ∂

∂t
logS(g(t)) = λ(g(t)) ∂

∂t
g(t)

(4.44)

When we use an AFT model for Xi, this implies the following about the hazard rate, using

the result in Equation (4.44):

− ∂
∂t

logS(t ∣ z) = exp(θTz)λ0(t exp(θTz)) (4.45)

Of course, sometimes this corresponds to a proportional hazards model, as in the Weibull

case, but most times it does not.

This formulation allows us to write log(Xi) as a linear model:

log(Xi) = µ + zTi η + σϵi.

Note that −θ = η. The distribution of ϵi is a modeling choice. We saw that the extreme

value distribution is equivalent to the Weibull proportional hazards regression. Any dis-

tribution over R will work, though common choices are normally distributed ϵi, leading to

Xi ∼ LogNormal, and log-logistic distributed ϵi.
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The log-logistic model uses the following density for ϵi:

fϵ(x) =
ex

(1 + ex)2
, (4.46)

which leads to survival function of:

S(t) = 1

1 + λtα
(4.47)

Λ(t) = − log(S(t)) (4.48)

= log(1 + λtα) (4.49)

The log-logistic model has the unique property that the odds of survival for an individual at

time t are proportional to the odds of survival for the base population:

S(t ∣ z)
1 − S(t ∣ z)

= exp(βTz) S0(t)
1 − S0(t)

where β = −γσ.
Of course, we can’t just fit these models to the log of the observed failure times because

we have censoring. Thus we’ll need to do numerical maximum likelihood as we did for other

survival models.

4.4.1 Model checking in AFT models

The relationships that held for the Weibull regressions can be ported to other AFT models.

Klein, Moeschberger, et al. 2003 suggest checking a function of the cumulative hazard against

a function of t to assess adequacy of model fit. We can use the (tie-corrected) Nelson-Aalen

estimator of the cumulative hazard function:

Λ̂NA(t) = ∑
i∣ti≤t

di

Y (t)

and examine transformations thereof against appropriate transformations of t.

For the log-logistic model, Λ(t) = log(1 + λtα). This implies that

log(exp(Λ̂NA(t)) − 1) ≈ logλ + α log t

We can compute similar expressions for the Weibull and the log-normal model.

4.4.2 Cox-Snell residuals

Recall from Section 1.7 that the following relationship holds: When Xi ∼ F with cumulative

hazard function Λ(t)
Λ(Xi) ∼ Exp(1).

59



We can use this idea to generate graphical checks for our models.

Continuing with the log-logistic model, we could graphically assess whether the following

Cox-Snell residual, denoted rCi :

rCi = log(1 + ez
T
i θ̂λ̂tα̂i )

is exponentially distributed with unit rate. The issue with plotting these residuals directly

against the quantiles of an exponential distribution is that for the censored observations,

Λ(Ci) won’t be exponentially distributed. But we can use the properties of the cumulative

hazard function to our advantage, namely that it is nondecreasing in t. Thus for censored

observations where ti = ci, this implies that xi ≥ ti. Thus, Λ(ti) ≤ Λ(xi), so we can say that

when δi = 0, Λ(xi) is censored at Λ(ti).
The solution is to use the Kaplan-Meier estimator again! We can form the censored

cumulative hazard sample:

{(t̃i =min(Λ(xi),Λ(ci)), δi = 1 (xi ≤ ci)), i = 1, . . . , n} = (4.50)

{(t̃i = Λ(ti), δi = 1 (xi ≤ ci)), i = 1, . . . , n} (4.51)

where the second line follows from the nondecreasing characteristic of Λ(t).
Then we can fit the Kaplan Meier estimator to the dataset (t̃i, δi) observations to infer

the non-censored distribution of Λ(xi). The procedure is as outlined below:

1. Fit a parametric survival model to {(ti, δi,zi), i = 1, . . . , n}

2. Calculate the Cox-Snell residuals using the estimated survival model: {(t̃i = Λ̂(ti), δi =
1 (xi ≤ ci)), i = 1, . . . , n}

3. Fit a Kaplan-Meier estimator to the datatset Equation (4.50)

4. Plot the log(− log(ŜKM(t))) vs. log t to see whether a line with zero intercept and

slope 1 fits in the confidence intervals
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4.4.3 Influence of data points in likelihood equations

The material in this section is from Collett 1994, Cain and Lange 1984, and Broderick et

al. 2023. Like in linear regression, we’d like to determine if some of our data points are

influencing our conclusions; armed with this information, perhaps we can expand the model

to incorporate these outliers, or perhaps there is a data processing error that we can rectify

and re-run our analysis.

One idea is to determine whether omitting one data point appreciably changes our esti-

mate of our parameter of interest. The simplest way to do this is to refit the data n-times,

where each time we omit one data point. For small datasets, this is reasonable, but when

we have large n, or a very complex model, it may be infeasible to refit the model n times.

Instead, we can cleverly use Taylor expansions to approximate the effect of small pertur-

bations in the data on the estimated coefficient. If these small perturbations induce large

changes in our estimated coefficients, then it stands to reason that the datapoints that have

been perturbed are influential to our estimates.

Let’s make things more concrete. Suppose we have a model with a parameter vector,

θ ∈ Rk, and a maximum likelihood estimate thereof θ̂. We’d like to understand how θ̂ changes

if we drop one datapoint. Let the index of this datapoint be j. We can formalize the idea of

dropping a datapoint by examining the score equations. Recall our typical problem setup:

We have n observations, each of which is a triplet of the time to failure or the time to

censoring, ti, an indicator δi that ti is the time to failure, and zi ∈ Rk, the covariate vector

associated with each unit. Let our likelihood for each observation be fθ(ti, δi,zi) Let

ℓ(θ) =
n

∑
i=1

log fθ(ti, δi,zi).

The score equations are defined as usual:

∇θℓ(θ) =
n

∑
i=1
∇θ log fθ(ti, δi,zi) (4.52)

and θ̂ is the solution to the set of equations ∇θℓ(θ) ∣θ=θ̂= 0
We can introduce the variables wi into the equation above, as well as the collection of

the wi into the vector w:

∇θℓ(θ,w) =
n

∑
i=1
wi∇θ log fθ(ti, δi,zi) (4.53)

The vector θ̂(w) solves the equations

n

∑
i=1
wi∇θ log fθ(ti, δi,zi) ∣θ=θ̂(w)= 0 (4.54)
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Note that our original MLE, θ̂ ≡ θ̂(1). Deleting the jth datapoint amounts to setting wj = 0.
Then the idea is to approximate θ̂(w) near the vector 1. For the mth element of θ̂(w),

θ̂(w)m, this is:

θ̂(w)m ≈ θ̂(1)m +
n

∑
i=1
(wi − 1) (

∂

∂wi
θ̂(w)m)∣

w=1
(4.55)

When all but one of these wi is equal to 1, namely wj = 0, let

w(j) = (1Tj−1,0,1Tn−j)T .

Then we get

θ̂(w(j))m ≈ θ̂(1)m − (
∂

∂wj
θ̂(w)m)∣

w=1
(4.56)

Thus for the whole vector θ̂(w(j)) we get, as in Cain and Lange 1984,

θ̂(w(j)) ≈ θ̂(1) − (
∂

∂wj
θ̂(w))∣

w=1
(4.57)

where
∂

∂wj
θ̂(w) = ( ∂

∂wj
θ̂(w)1, . . . ,

∂

∂wj
θ̂(w)k)T .

The question remains how to calculate ∂
∂wj

θ̂(w) evaluated at w = 1?
Let the vector U(θ,w) be defined as

U(θ,w) =
n

∑
i=1
wi∇θ log fθ(ti, δi,zi).

Note that the score equations are a function of the parameter vector and the vector of

weights. The MLE given a set of weights w, θ̂(w) solves the system of equations:

U(θ̂(w),w) = 0.

Then the implicit function theorem (more detail here?) allows us to differentiate the expres-

sion above with respect to wj and solve for the derivative of interest, ∂
∂wj

θ̂(w).
Recalling the chain rule for multivariate functions: Let v(x(t), y(t)) and calculate ∂

∂tv(x(t), y(t)):

∂

∂t
v(x(t), y(t)) = ∂v(x, y)

∂x
∣
x=x(t),y=y(t)

∂x(u)
∂u
∣
u=t
+ ∂v(x, y)

∂y
∣
x=x(t),y=y(t)

∂y(u)
∂u
∣
u=t
.

We can differentiate the expression for the score function:

∂

∂wj
U(θ̂(w),w) = ∂

∂wj
0 Ô⇒ ∂U(θ,w)

∂θT
∣
θ=θ̂(1),w=1

θ̂(w)
∂wj

∣
w=1
+ U(θ,w)

∂wj
∣
θ=θ̂(1),w=1

= 0
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Assuming that
∂U(θ,w)
∂θT

∣
θ=θ̂(1),w=1

is invertible, which is equivalent to requiring that the observed information matrix evaluated

at the MLE with the complete data be invertible, we can solve the equation for the quantity

of interest, ∂
∂wj

θ̂(w) evaluated at w = 1.

θ̂(w)
∂wj

∣
w=1
= (− ∂U(θ,w)

∂θT
∣
θ=θ̂(1),w=1

)
−1

U(θ,w)
∂wj

∣
θ=θ̂(1),w=1

Now we need to evaluate U(θ,w)
∂wj
∣
θ=θ̂(1),w=1

.

∂

∂wj
U(θ,w) = ∂

∂wj
(
n

∑
i=1
wi∇θ log fθ(ti, δi,zi))

= ∇θ log fθ(tj, δj,zj)

so
U(θ,w)
∂wj

∣
θ=θ̂(1),w=1

= ∇θ log fθ(tj, δj,zj)∣θ=θ̂(1),w=1 .

Finally, we get the general equation for the sensitivity of the MLE to the deletion of the jth

data point:

θ̂(1) − θ̂(w(j)) ≈ (−
∂U(θ,w)
∂θT

∣
θ=θ̂(1),w=1

)
−1

∇θ log fθ(tj, δj,zj)∣θ=θ̂(1),w=1 (4.58)

This makes a good bit of sense; if the gradient of the log-likelihood function at a point lies

along a direction of large uncertainty, this datapoint will have a large influence on the MLE.

The expression in Equation (4.58) also makes sense when viewed through the lens of the

limiting distribution for the MLE. Note that

− ∂U(θ,w)
∂θT

∣
θ=θ̂(1),w=1

= −∇2
θℓ(θ) ∣θ=θ̂(1)

Recall that from a previous lecture we have that a Taylor expansion for ∇θℓ(θ)∣θ=θ̂

√
n(θ̂(1) − θ†) = (− 1

n
∇2

θℓ(θ) ∣θ=θ̃(1))
−1 1√

n
∇θℓ(θ) ∣θ=θ†

Using the Taylor expansion formula with remainders yields

√
n(θ̂(1) − θ†) = (− 1

n
∇2

θℓ(θ) ∣θ=θ†)
−1 1√

n
∇θℓ(θ) ∣θ=θ† +op(1)
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The plug-in estimator for the right-hand side at θ† = θ̂(1) yields:

√
n(θ̂(1) − θ†) = (− 1

n
∇2

θℓ(θ) ∣θ=θ̂(1))
−1 1√

n
∇θℓ(θ) ∣θ=θ̂(1) +op(1)

= (− 1
n
∇2

θℓ(θ) ∣θ=θ̂(1))
−1 1√

n

n

∑
i=1
∇θ log(fθ(ti, δi,zi)) ∣θ=θ̂(1) +op(1)

Dividing each side by
√
n yields

θ̂(1) − θ† = (−∇2
θℓ(θ) ∣θ=θ̂(1))

−1 n

∑
i=1
∇θ log(fθ(ti, δi,zi)) ∣θ=θ̂(1) +op(1/

√
n)

Thus, asymptotically, each observation (ti, δi,zi) perturbs the deviation between the MLE

and the true value by approximately:

(−∇2
θℓ(θ) ∣θ=θ̂(1))

−1
∇θ log(fθ(ti, δi,zi)) ∣θ=θ̂(1) .

Linear regression

In the case of the linear regression model with normally distributed errors and known vari-

ance, we have the following results:

log fθ(tj, δj,zj)∣θ=θ̂(1),w=1 = zi(yi − β̂zi)

and

(− ∂U(θ,w)
∂θT

∣
θ=θ̂(1),w=1

)
−1

= −(ZTZ)−1.

Assuming that Z is full column rank, we can decompose the variance covariance matrix as:

−(ZTZ)−1 = −QAQT

whereQ is a matrix with the orthonormal eigenvectors of ZTZ as columns. Thus the influence

of the jth datapoint is

−QAQTzi(yi − β̂zi).

If zi lies in a direction of large uncertainty for the variance-covariance matrix (i.e. the vector

is aligned with the eigenvector associated with a large eigenvalue), and there is a large fitted

residual, the datapoint will have a lot of influence on at least one of the coefficients.
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Another thing to note is that if the information matrix is block diagonal, then the gradi-

ents corresponding to one parameter block can’t influence the MLE of the opposing param-

eter block.

For notational ease:

∆θ̂j = θ̂(1) − θ̂(w(j)).

Collett 1994, citing Hall et al. 1982, suggests standardizing the sensitivity to the control

for the inverse of the variance-covariance of the estimated θ̂, namely:

(∆θ̂j)T i(θ̂)(∆θ̂j).

Recall that

i(θ̂) = − ∂U(θ,w)
∂θT

∣
θ=θ̂(1),w=1

This leads to the tidy expression:

∇θ log fθ(tj, δj,zj)∣Tθ=θ̂(1),w=1 (−
∂U(θ,w)
∂θT

∣
θ=θ̂(1),w=1

)
−1

∇θ log fθ(tj, δj,zj)∣θ=θ̂(1),w=1 .

Alternatively, we can use the sandwich estimator for the asymptotic variance covariance
matrix, which is defined in Equation (4.27) as:

Σ̂R =
⎛
⎝
− 1
n

∂U(θ,w)
∂θT

∣
θ=θ̂(1),w=1

⎞
⎠

−1
( 1
n

n

∑
i=1
(∇θ log fθ(ti, δi,zi) (∇θ log fθ(ti, δi,zi))T )∣

θ=θ̂(1)
)
⎛
⎝
− 1
n

∂U(θ,w)
∂θT

∣
θ=θ̂(1),w=1

⎞
⎠

−1

Note that this is variance/covariance matrix for
√
n(θ̂n−θ†). We instead want to get a sense

for the variance/covariance matrix for θ̂n, so we divide the expression by
√
n, leading to a

variance estimate that is scaled by n−1. Using the statistic

(∆θ̂j)T (n−1Σ̂R)−1(∆θ̂j)

and noting the following equality:

(n−1Σ̂R)−1 =
⎛
⎝
− ∂U(θ,w)

∂θT
∣
θ=θ̂(1),w=1

⎞
⎠
(

n

∑
i=1
(∇θ log fθ(ti, δi,zi) (∇θ log fθ(ti, δi,zi))T )∣

θ=θ̂(1)
)
−1 ⎛
⎝
− ∂U(θ,w)

∂θT
∣
θ=θ̂(1),w=1

⎞
⎠

yields:

∇θ log fθ(tj , δj ,zj)∣Tθ=θ̂(1),w=1 (
n

∑
i=1
(∇θ log fθ(ti, δi,zi) (∇θ log fθ(ti, δi,zi))T )∣

θ=θ̂(1)
)
−1
∇θ log fθ(tj , δj ,zj)∣θ=θ̂(1),w=1 .

Let’s do an example where we can analytically calculate the influence score for a single

observation on the parameter vector:
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Example 4.4.1. Influence of datapoints in exponential regression model The inverse of the

observed information is:

Î−1(λ̂, β̂) = 1
(r1+r2)eβ̂T2

λ̂
− e2β̂T 2

2

⎡⎢⎢⎢⎢⎣

λ̂eβ̂T2 −eβ̂T2
−eβ̂T2 r1+r2

λ̂2

⎤⎥⎥⎥⎥⎦
(4.59)

which simplifies to:

⎡⎢⎢⎢⎢⎣

r1
T 2
1
− 1
T1

− 1
T1

r1+r2
r1r2

⎤⎥⎥⎥⎥⎦
(4.60)

and the score equations are:

∂

∂λ
ℓ(λ,β) = δi

λ
− eziβti (4.61)

∂

∂β
ℓ(λ,β) = δizi − ziλeziβti (4.62)

which we evaluate at the MLE:

λ̂ = r1
T1

êβ = r2
T2

T1
r1

to yield

∂

∂λ
ℓ(λ,β) = δiT1

r1
− ( r2

T2

T1
r1
)
zi

ti (4.63)

∂

∂β
ℓ(λ,β) = δizi − (

r2
T2
) ziti (4.64)

For an individual with zi = 0, this gives the sensitivities:

⎡⎢⎢⎢⎢⎣

δi−ti r1
T1

T1
ti
T1
− δi
r1

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

δi−ti r1
T1

T1
ti

r1
T1
−δi

r1

⎤⎥⎥⎥⎥⎥⎦
(4.65)

These expressions make sense. At a mathematical level, they agree with the total derivatives

for each function: r1
T1

and − log(r1/T1). Our expression for the sensitivity of the MLE to the

omission of one datapoint is in terms of the difference between the MLE of the full model

and the MLE of the leave-one-observation-out model:

θ̂(1) − θ̂(w(j))

This means that the change in total time at risk for a group j = 1,2, or Tj, is positive, as is
the change in total failures for each group:

Tj − (Tj)(i) = ti (4.66)

rj − (rj)(i) = δi (4.67)
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Then the expression the

d
r1
T1
= ∂

∂r1

r1
T1

dr1 +
∂

∂T1

r1
T1

dT1 (4.68)

= dr1
T1
− dT1

r1
T 2
1

(4.69)

≈
δi − ti r1T1
T1

(4.70)

and

d − log(r1/T1) = −
∂

∂r1
log(r1/T1)dr1 −

∂

∂T1
log(r1/T1)dT1 (4.71)

= dT1
T1
− dr1
r1

(4.72)

≈
ti
r1
T1
− δi
r1

(4.73)

It helps to think about the units of the parameter estimates. λ measures the rate of

failures per unit time, while β measures the log of the relative rates of failure. Thus β is

unitless. Remember that

δi − ti
rj
Tj

is the residual for an individual i in group j. It compares the observed failure to the expected

failure rate, which in the exponential model is just the estimated rate of failure times the

time at risk for i, or ti. When one removes an individual from group 1 the estimate for the

rate of failure in group 1 declines by the residual expected failure per unit time. At the same

time, the log relative rate of failure must increase by the residual failure per unit failure

because the estimator for β is log(r2/T2) − log(λ̂). Thus any change in λ̂ has an opposite

change for β̂.

For an individual with zi = 1, the sensitivities are:

⎡⎢⎢⎢⎢⎣

0
δi
r2
− ti
T2

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

0
δi−ti r2

T2

r2

⎤⎥⎥⎥⎥⎦
(4.74)

Again, this makes sense; λ̂ = r1
T1
, so omitting an individual in group 2 can’t change the

MLE for λ. Finally, given β̂ = log(r2/T2) − log(λ̂), omitting a datapoint will decrease the

failure rate estimate within group 2 by the residual scaled by the failure rate. Note the total

derivative of log(r2/T2), as above, is:

d log(r2/T2) =
dr2
r2
− dT2
T2

(4.75)
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We can also calculate the scaled total deviation. For zi = 0 we have:

(ti r1T1 − δi)
2

r1
(4.76)

and for zi = 1 we have

(ti r2T2 − δi)
2

r2
(4.77)
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4.5 Cox Proportional Hazards Model

The Cox proportional hazards model is one of the most widely-used statistical models. It

is a semiparametric model for the hazard ratio, which means we will avoid specifying a

parameteric form for the baseline, time-varying hazard rate, while specifying a parametric

model for the influence of covariates on the hazard rate:

λ(t ∣ z) = λ0(t) exp(zTβ)

In the following section we’ll derive the likelihood for the model in a similar way to our

NPMLE derivation of the hazard rate.

4.5.1 Cox model likelihood derivation and the Breslow estimator

without ties

Suppose we have the standard survival-analysis triplet of observable random variables for

each unit i under study:

{(Ti =min(Xi,Ci),∆i = 1 (Xi ≤ Ci) ,zi), i = 1, . . . , n}

where Xi is the absolutely continuous time to failure for unit i, Ci is the absolutely contin-

uous time to censoring, and zi is a length-p vector of time-invariant covariates that we are

conditioning on.

As stated above, we assume that the hazard function for the distribution of Xi is:

λi(t) = λ0(t) exp(zTi β)

and we’ll leave the function λ0(t) unspecified. As in Chapter 3, we’ll derive an estimator for

λ0(t) at the event times {ti, i = 1, . . . , n}. Let Λ(t) be the right-continuous-with-left-hand-

limits (cádlág for short, in French) cumulative hazard function with mass points at ti. Note

that λ(ti) = Λ(ti) −Λ(ti−), and we define the integral

∫
B
F (t)dΛ(t) = ∑

i∣ti∈B
F (ti)λ(ti).

This is a nonparametric estimator because as the data grow, so too does the dimension of

the parameter space. This is akin to the Theoretical note in Klein, Moeschberger, et al.

2003, and an exercise in O. O. Aalen 1988.

The joint likelihood for the model for set of observed data {(ti, δi,zi), i = 1, . . . , n}, which
is assumed to have no ties in event times, is:

L(λ0,β) =
n

∏
i=1
(λ0(ti) exp(zTi β))

δi
exp(− exp(zTi β) ∫

ti
0 λ0(u)du). (4.78)
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Recall the definition of Yi(u) from Chapter 3:

Yi(u) = 1 (ti ≥ u) .

The function is left continuous with a jump from 1 to 0 at ti. Then we can rewrite the model

as

L(λ0,β) =
n

∏
i=1
(λ0(ti) exp(zTi β))

δi
exp(− exp(zTi β) ∫

∞
0 Yi(u)λ0(u)du) (4.79)

= (
n

∏
i=1
(λ0(ti) exp(zTi β))

δi) exp(− ∫
∞
0 ∑

n
i=1 exp(zTi β)Yi(u)λ0(u)du) (4.80)

= (
n

∏
i=1
(λ0(ti) exp(zTi β))

δi) exp(−∑nj=1 (∑ni=1 exp(zTi β)Yi(tj))λ0(tj)) (4.81)

Let’s fix a value of β and compute the NPMLE for λ0(tj). The log-likelihood for λ0 is

ℓ(λ0,β) =
n

∑
i=1
δi log (λ0(ti) exp(zTi β)) −∑nj=1 (∑ni=1 exp(zTi β)Yi(tj))λ0(tj)

Differentiating with respect to λ0(tj), provided δj = 1, gives
∂

∂λ0(tj)
ℓ(λ0,β) =

1

λ0(tj)
−

n

∑
i=1

exp(zTi β)Yi(tj)

We note that the second derivative with respect to λ0(tj) is strictly negative for all positive

λ0(tj) Setting this expression equal to zero and solving for ˆλ0(tj) will give the unique NPMLE

λ̂0(tj) =
1

∑ni=1 exp(zTi β)Yi(tj)
(4.82)

The denominator can be simplified if we define the set R(tj) ∶ {i ∣ Yi(tj) = 1, i = 1, . . . , n}.
This is called the risk set at time tj.

λ̂0(tj) =
1

∑i∈R(tj) exp(zTi β)
(4.83)

Let’s substitute this NPMLE into the likelihood in Equation (4.78). Recognize that by

definition of δj and λ0(tj) only jumping at event-of-interest times, the estimator is equiva-

lently defined as

λ̂0(tj) =
δj

∑i∈R(tj) exp(zTi β)
(4.84)

Subbing this back into Equation (4.81) gives

L(β) =
⎛
⎝

n

∏
i=1
(

exp(zTi β)
∑j∈R(ti) exp(zTj β)

)
δi⎞
⎠
exp(−

n

∑
j=1
δj
(∑ni=1 exp(zTi β)Yi(tj))
∑i∈R(tj) exp(zTi β)

) (4.85)

=
⎛
⎝

n

∏
i=1
(

exp(zTi β)
∑j∈R(ti) exp(zTj β)

)
δi⎞
⎠
exp(−

n

∑
j=1
δj) (4.86)
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Then we get the final term for the Cox model partial likelihood:

L(β) ∝
n

∏
i=1
(

exp(zTi β)
∑j∈R(ti) exp(zTj β)

)
δi

(4.87)

=
⎛
⎝ ∏i∣δi=1

exp(zTi β)
∑j∈R(ti) exp(zTj β)

⎞
⎠

(4.88)

where we note that maximizing Equation (4.87) will maximize Equation (4.86).

Let β̂ be the MLE of the expression L(β). Then the estimator for the cumulative hazard

is defined as:

Λ̂0(t) = ∑
ti∣δi=1,ti≤t

1

∑j∈R(ti) exp(zTj β̂)
(4.89)

This is known as the Breslow estimator for the cumulative hazard.

4.5.2 Alternative view of the Cox model

The final form of the partial likelihood for the Cox model is:

L(β) ∝
⎛
⎝ ∏i∣δi=1

exp(zTi β)
∑j∈R(ti) exp(zTj β)

⎞
⎠

(4.90)

If we multiply top and bottom by λ0(ti) (essentially we’ll be multiplying by 1 a bunch of

times), we get:

L(β) ∝
⎛
⎝ ∏i∣δi=1

λ0(ti) exp(zTi β)
∑j∈R(ti) λ0(ti) exp(zTj β)

⎞
⎠

(4.91)

If we write out the hazard function explicitly we get the following probability distribution:

L(β) ∝
⎛
⎝ ∏i∣δi=1

limdt↘0P (ti ≤Xi < ti + dt ∣Xi ≥ ti)
∑j∈R(ti) limdt↘0P (ti ≤Xj < ti + dt ∣Xj ≥ ti)

⎞
⎠

(4.92)

Under the assumption of independent event times, we can interpret this probability function

as the probability the ith participant surviving to time ti and failing just after ti conditional

on exactly 1 death occurring just after time ti among those surviving to time ti. Finally,

under noninformative censoring, and noting that this is

L(β) ∝
⎛
⎝ ∏i∣δi=1

limdt↘0P (ti ≤Xi < ti + dt ∣Xi ≥ ti,Ci ≥ ti)
∑nj=1 limdt↘0P (ti ≤Xj < ti + dt ∣Xj ≥ ti,Ci ≥ ti)

⎞
⎠

(4.93)

Where the sum in the denominator follows because if Ci < ti or Xi < ti, then P (ti ≤ Xj <
ti + dt ∣Xj ≥ ti,Ci ≥ ti) = 0.

The no ties assumption is not problematic with absolutely continuous data. In practice

there will be ties in the data.
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Data with ties

The simplest approximation when there are ties in the data is to consider the times at which

the ties occurred to be distinct, but mismeasured. We define {τj, j = 1, . . . r = ∑i δi} to be

the distinct times at which failures occur. We can expand the dataset with

{(τj, dj = ∑
i∣ti=τj

δi, sj = ∑
i∣ti=τj

zi), j = 1, . . . , r}.

We still need access to the risk set function R(t) = ∑i Yi(t) and zi. The partial likelihood

can be written in terms of the new dataset:

L(β) ∝
n

∏
i=1
(

exp(zTi β)
∑j∈R(ti) exp(zTj β)

)
δi

(4.94)

=
r

∏
j=1
∏
i∣ti=τj

(
exp(zTi β)

∑k∈R(ti) exp(zTkβ)
) (4.95)

=
r

∏
j=1

exp(sTj β)

(∑k∈R(τj) exp(zTkβ))
dj

(4.96)

This is not quite right because we’ve ignored the fact that when failure time is continuous,

all true failure times are ordered in time. Let τj be a time interval in which several units

failed, and let the set of units that fail at τj be D(τ), defined as:

D(τj) = {i ∣ ti = τj, i = 1, . . . , n}.

The proper way to handle ties would be to integrate over all possible permutations of failure

times.

Exact handling of ties This section follows Kalbfleisch and Prentice 2002. Let the indices

of the set of units failing at time τj be {1, . . . , dj}. Let Qj be the set of permutations of

D(τj) and let P = (p1, . . . , pdj) be an element of this permutation. Finally, let the extended

at risk set be R(τj, P,m) = R(τj) ∖ {p1, . . . , pm−1} where we let p0 be the empty set. For a

single term in the likelihood at time τj, we need to integrate the term

∏
i∣δi=1,ti=τj

exp(zTi β)
∑k∈R(τj) exp(zTkβ)

(4.97)

over all permutations of D(τj). We have no extra information to weight the orderings, so

we give them all equal weight as 1
dj !
. This integral is

exp(sTj β)
dj!

∑
P ∈Qj

dj

∏
m=1

1

∑k∈R(τj ,P,m) exp(zTkβ)
(4.98)
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Not surprisingly, this calculation is prohibitively computationally intensive. The part that

is computationally intensive is the sum. If we note that we have dj! terms in the sum, we

can approximate the sum by Efron’s approximation:

dj!

∏dj−1
m=0 (∑k∈R(τj) exp(zTkβ) −

m
dj
∑k∈D(τj) exp(zTkβ))

(4.99)

The intuition for this method is that you approximate the decrement in the risk set by the

average of the relative risk of failure of the failed units at time τj.

4.5.3 Interpretation of the Cox regression model

The key idea for the Cox regression model is that we can maximize the partial likelihood

without worrying about specifying any form for the baseline hazard rate λ0(t). Informally,

this allows us to use standard asymptotic tests and confidence intervals for β without wor-

rying about the infinite dimensional (i.e. unknown function) baseline hazard rate. Thus we

can use all the asymptotic likelihood techniques we developed for parametric models for the

Cox model.
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4.5.4 Score function of the Cox model

Given that we’ll use maximum likelihood to fit the Cox model, the score equations for the Cox

model will be of importance to us. As shown in the previous section, the partial likelihood

is:

PL(β) =
n

∏
i=1
(

exp(zTi β)
∑j∈R(ti) exp(zTj β)

)
δi

(4.100)

The log-partial likelihood is thus

logPL(β) =
n

∑
i=1
δi
⎛
⎝
zTi β − log

⎛
⎝ ∑j∈R(ti)

exp(zTj β)
⎞
⎠
⎞
⎠

(4.101)

The gradient of this function with respect to the parameter vector β is

∂

∂β
logPL(β) =

n

∑
i=1
δi (zi −

∑j∈R(ti) zj exp(zTj β)
∑j∈R(ti) exp(zTj β)

) (4.102)

This can be seen to be the difference between the covariate value for individual i who fails

at time ti and the weighted average covariate value for individuals in the risk set at ti.

Example 4.5.1. Simple two-group Cox regression example Let’s assume that we observe

failure time data from two groups, 1 and 2, that contain no tied event times. The observed

data is {(ti, δi, zi), i = 1, . . . , n}. Each observation i is paired with a scalar value zi taking the

value 0 when i is in group 1, and 1 otherwise. The hazard model takes the form:

λi(t) = λ0(t) exp(βzi).

with λ0(t) left unspecified.
The partial likelihood for β is

n

∏
i=1
( exp(βzi)
∑k∈R(ti) exp(βzk)

)
δi

(4.103)

Equation (4.103) simplifies if we create an alternative dataset by generating {τj = ti ∣ δi = 1},
and {(τj, δ2j), j = 1, . . . r = ∑i δi} the times of observed failures:

r

∏
j=1

exp(βδ2j)
∑k∈R(τj) exp(βzk)

(4.104)

Let’s write out the log-likelihood and the score equation for β:

r

∑
j=1
βδ2j −

r

∑
j=1

log
⎛
⎝ ∑k∈R(τj)

exp(βzk)
⎞
⎠

(4.105)
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This can again be simplified if we keep track of the number of individuals at risk in each

group. Let these variables be, as before, denoted Y 1(τj), Y 2(τj). As a reminder, we define

these variables as:

Y 1(τj) =
n

∑
i=1
(1 − zi)1 (ti ≥ τj) (4.106)

Y 2(τj) =
n

∑
i=1
zi1 (ti ≥ τj) (4.107)

Because zk = 0 for all Y 1(τj) we get

r

∑
j=1
βδ2j −

r

∑
j=1

log (Y 1(τj) + Y 2(τj)eβ) (4.108)

One more simplification is that ∑rj=1 δ2j = ∑ni=1 δizi, which we’ll call r2, or the total failures

in group 2.

r2β −
r

∑
j=1

log (Y 1(τj) + Y 2(τj)eβ) (4.109)

Taking the gradient with respect to β gives:

r2 −
r

∑
j=1

Y 2(τj)eβ

Y 1(τj) + Y 2(τj)eβ
(4.110)

Setting this equation equal to zero leads to an equation we cannot explicitly solve in terms

of β:

r

∑
j=1

Y 2(τj)eβ

Y 1(τj) + Y 2(τj)eβ
= r2 (4.111)

An alternative is to use the score test. Here is the benefit of the score test in examples

like these, where we don’t have to maximize the log-likelihood under the alternative in order

to test the hypothesis that the rates of failure are different between the two groups. Take a

look at Section 4.1 to remind yourself about what the score test entails.

Here is the score equation for β

r

∑
j=1
(δ2j −

Y 2(τj)eβ

Y 1(τj) + Y 2(τj)eβ
) (4.112)

The second derivative of the log-likelihood with respect to β is

−
r

∑
j=1

Y 1(τj)Y 2(τj)eβ

(Y 1(τj) + Y 2(τj)eβ)2
(4.113)
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The score test statistic is formed by evaluating the score and the observed information at

β = 0:

∂

∂β
ℓ(β) ∣β=0 =

r

∑
j=1
(δ2j −

Y 2(τj)
Y 1(τj) + Y 2(τj)

)

− ∂
2

∂2β
ℓ(β) ∣β=0 =

r

∑
j=1

Y 1(τj)Y 2(τj)
(Y 1(τj) + Y 2(τj))2

(4.114)

These are exactly the numerator and the denominator of the log-rank test statistic when

there are no ties present. Remember, the log-rank test, using data collected through time

point τ is
Zj(τ)√

Var(Zj(τ))
With expressions for numerator and denominator below:

Zj(τ) =
n1+n2

∑
i=1∣ti≤τ

W (ti)(dij − di
Y j(ti)
Y (ti)

)Var (Zj(τ)) = ∑
i

W (ti)2 (di
Y j(ti)
Y (ti)

(1 −
Y j(ti)
Y (ti)

) Y (ti) − di
Y (ti) − 1

)

(4.115)

In our case here, di is always equal to 1 because we have no ties. With two groups 1− Y j(ti)
Y (ti)

is

Y 1(ti)
Y (ti)

, so the numerator and denominator simplify to equal the equations in Equation (4.114).

The duality between the Cox model and the log-rank test sheds some light as to the power

of the log-rank test. Namely, the log-rank test tends to be powerful against the alternative

proportional hazards hypotheses.

4.5.5 Model checking in the Cox model

We can use a lot of the same ideas we’ve used for parametric models for model checking in the

Cox model. Remember the Cox-Snell residuals we defined using the estimated cumulative

hazard function Λ̂i(t):

ei = Λ̂i(ti)
approx∼ Exponential(1) (4.116)

We can also use this function to define what’s called a martingale residual:

eMi = δi − Λ̂i(ti)

These residuals are much closer to the residuals in linear regression models in that they sum

to zero for any fitted model, and are zero in expectation in large samples and approximately

uncorrelated. Exercise: show that this is true for the Cox model. A downside of the mar-

tingale residuals is that we are required to estimate the cumulative hazard function, which

may not be of interest.
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Figure 4.3: Example plot of Ni(t) = 1 (3 ≤ t)

Martingale residuals

We’ve defined δi as the indicator that the ith participant has experienced a failure over the

course of the study. This is defined as δi = 1 (Xi ≤ Ci) where Ci is the time of censoring.

We can imagine defining this variable for every time point t after the ith participant enters

the study. Let Ni(t) = 1 (Xi ≤ t,Xi ≤ Ci). This equals δi when t equals the study end point.

On the event that Xi ≤ Ci, Ni(t) is a step-function of time, equalling 0 for all t ≥ Xi, and

then jumping to 1 at t + ϵ for all ϵ > 0. A plot of this function is shown in Figure 4.3. This

variable can be seen to be a function of t, and is technically called a stochastic process. One

way to think about this is that Ni(t) is a random function of time. To see this note that for

every draw of Xi, Ni(t) is a different step function, jumping up to 1 at Xi.

Of course, a natural quantity that arises from our definition is

E [Ni(t)] = E [1 (Xi ≤ t,Xi ≤ Ci)] = P (Xi ≤ t,Xi ≤ Ci).

Let GCi
(x) be the survival function of Ci, or P (Ci > x) evaluated at x, and let SXi

(x) be the
survival function of Xi. Writing down the expression for the expectation of Ni(t) in terms

of the hazard ratio for Xi, λi(x), will show that the martingale residuals have mean zero:

We’ll assume for ease of exposition that Xi ⊥⊥ Ci. Remember that λi(x) = fXi
(x)/SXi

(x−),
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and that we’ve defined Ti =min(Xi,Ci). Let the density function for Ti be fTi(y).

E [Ni(t)] = P (Xi ≤ t,Xi ≤ Ci)

= ∫
t

0
GCi
(x−)fXi

(x)dx

= ∫
t

0
GCi
(x−)fXi

(x)SXi
(x−)

SXi
(x−)

dx

= ∫
t

0
GCi
(x−)SXi

(x−) fXi
(x)

SXi
(x−)

dx

= ∫
t

0
P (Ci ≥ x,Xi ≥ x)λi(x)dx

= ∫
t

0
E [1 (Ci ≥ x,Xi ≥ x)]λi(x)dx

= ∫
t

0
E [1 (Ti ≥ x)]λi(x)dx (Ti =min(Xi,Ci))

= ∫
∞

0
∫
∞

0
1 (t ≥ x)1 (y ≥ x) fTi(y)dyλi(x)dx

= ∫
∞

0
∫
∞

0
1 (t ≥ x)1 (y ≥ x)λi(x)dxfTi(y)dy (Fubini)

= ∫
∞

0
∫

t

0
1 (y ≥ x)λi(x)dxfTi(y)dy

= E [∫
t

0
1 (Ti ≥ x)λi(x)dx]

It immediately follows that

E [Ni(t) − ∫
t

0
λi(x)1 (Ti ≥ x)dx] = 0.

Schoenfeld residuals

Instead, we can use the score equations above to generate residuals, called Schoenfeld

residuals. Let zik be the kth component of the vector zi, and let

âik =
∑j∈R(ti) zjk exp(zTj β)
∑j∈R(ti) exp(zTj β)

eSik = δi (zik − âik) (4.117)

These give some sense of how much the ith observation is contributing to the score equations

for βk at the MLE for β.

This residual highlights the conditional probability view of the Cox model. In this inter-

pretation, the ith participant will be selected for failure at time ti with probability:

exp(ziβ)
∑j∈R(ti) exp(zTj β)

(4.118)
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This means, conditional on the set of observed values zj, j ∈ R(ti), that zi is a random

variable with a mean:

E [zi ∣ R(ti)] =
∑j∈R(ti) zj exp(zTj β)
∑j∈R(ti) exp(zTj β)

(4.119)

and variance:

Var (zi ∣ R(ti)) =
∑j∈R(ti) zjzTj exp(zTj β)
∑j∈R(ti) exp(zTj β)

−E [zi ∣ R(ti)]2 (4.120)

Testing proportional hazards

This view also can be used to show that these residuals can be used to determine whether

the proportional hazards assumption is valid. For the rest of this section, for exposition

purposes, let’s assume we have one covariate, zi. Suppose we are worried that our data may

be generated by a model with a hazard ratio defined as

λi(t) = λ0(t) exp(βzi + g(t)θzi)

for some function g(t). If we write the true (unobservable) Schoenfeld residuals for this

model we get:

ϵSi = zi −EH0 [zi ∣ R(ti)]

where

EH0 [zi ∣ R(ti)] =
∑j∈R(ti) zi exp(ziβ)
∑j∈R(ti) exp(ziβ)

which we can expand with

ϵSi = zi −
∑j∈R(ti) zi exp(βzi + g(t)θzi)
∑j∈R(ti) exp(βzi + g(t)θzi)

+
∑j∈R(ti) zi exp(βzi + g(t)θzi)
∑j∈R(ti) exp(βzi + g(t)θzi)

−EH0 [zi ∣ R(ti)]

Under this formulation

E [zi −
∑j∈R(ti) zi exp(βzi + g(t)θzi)
∑j∈R(ti) exp(βzi + g(t)θzi)

∣ R(ti)] = 0

by definition of the conditional expectation of zi. Let’s do a one-term Taylor expansion of

the true conditional mean under the alternative model about g(t) = 0:
∑j∈R(ti) zi exp(βzi + g(t)θzi)
∑j∈R(ti) exp(βzi + g(t)θzi)

≈
∑j∈R(ti) zi exp(βzi)
∑j∈R(ti) exp(βzi)

+ ∂

∂g(t)
∑j∈R(ti) zi exp(βzi + g(t)θzi)
∑j∈R(ti) exp(βzi + g(t)θzi)

∣
g(t)=0

g(t)

=
∑j∈R(ti) zi exp(βzi)
∑j∈R(ti) exp(βzi)

+ g(t)
∑j∈R(ti) θz2i exp(βzi + g(t)θzi)
∑j∈R(ti) exp(βzi + g(t)θzi)

− θ
(∑j∈R(ti) zi exp(βzi + g(t)θzi))2

(∑j∈R(ti) exp(βzi + g(t)θzi))2
∣
g(t)=0

= EH0 [zi ∣ R(ti)] +VarH0 (zi ∣ R(ti)) θg(t)

79



Plugging this in above gives:

ϵSi ≈ zi −
∑j∈R(ti) zi exp(βzi + g(t)θzi)
∑j∈R(ti) exp(βzi + g(t)θzi)

+VarH0 (zi ∣ R(ti)) θg(t)

Taking conditional expecations gives:

E [ϵSi ∣ R(ti)] ≈ VarH0 (zi ∣ R(ti)) θg(t)

Using the plug-in estimator eSi for E [ϵSi ∣ R(ti)] gives that

eSi ≈ VarH0 (zi ∣ R(ti)) θg(t)

under the alternative. Thus, plotting eSi against t gives a sense for whether there is evidence

against the proportional hazards assumption.

Letting eSi = zi −EH0 [zi ∣ R(ti)] gives

Influence function for Cox PH model

Of course, we have a tool that will give another approximation of how much an individual

observation contributes to the score equations, the influence function we derived in Sec-

tion 4.4.3. To make this more precise, we’ll need to define the weighted score equations:

∇βpℓ(β,w) =
n

∑
i=1
wiδi (zi −

∑j∈R(ti) zjwj exp(zTj β)
∑j∈R(ti)wj exp(zTj β)

) (4.121)

The key thing to note is that the weight vector shows up in two places, because omitting

an observation omits the observation from the risk set, against which other observations are

measured. We can see this by rewriting the score equations for an observation indexed by k.

∇βpℓ(β,w) = wkδk (zk −
∑j∈R(tk) zjwj exp(zTj β)
∑j∈R(tk)wj exp(zTj β)

) +
n

∑
i≠k
wiδi (zi −

∑j∈R(ti) zjwj exp(zTj β)
∑j∈R(ti)wj exp(zTj β)

)

(4.122)

Then we take the gradient of Equation (4.122) with respect to wk. Note that wk will show

up for all risk sets prior to and including tk. Then we can write the gradient as:

∂

∂wk
∇βpℓ(β,w) = δk (zk −

∑j∈R(tk) zjwj exp(zTj β)
∑j∈R(tk)wj exp(zTj β)

) −wkδk
∂

∂wk
(
∑j∈R(tk) zjwj exp(zTj β)
∑j∈R(tk)wj exp(zTj β)

)

− ∑
i∣ti<tk

wiδi
∂

∂wk
(
∑j∈R(ti) zjwj exp(zTj β)
∑j∈R(ti)wj exp(zTj β)

)

= δk (zk −
∑j∈R(tk) zjwj exp(zTj β)
∑j∈R(tk)wj exp(zTj β)

) − ∑
i∣ti≤tk

wiδi
∂

∂wk
(
∑j∈R(ti) zjwj exp(zTj β)
∑j∈R(ti)wj exp(zTj β)

)
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The gradient of the second term is

∂

∂wk
(
∑j∈R(ti) zjwj exp(zTj β)
∑j∈R(ti)wj exp(zTj β)

) =
zk exp(zTkβ)

∑j∈R(ti)wj exp(zTj β)
(4.123)

− exp(zTkβ)
∑j∈R(ti) zjwj exp(zTj β)
(∑j∈R(ti)wj exp(zTj β))2

(4.124)

Putting this all back together gives us

∂

∂wk
∇βpℓ(β,w) = δk (zk −

∑j∈R(tk) zjwj exp(zTj β)
∑j∈R(tk)wj exp(zTj β)

)

− ∑
i∣ti≤tk

wiδi
exp(zTkβ)

∑j∈R(ti)wj exp(zTj β)
(zk −

∑j∈R(ti) zjwj exp(zTj β)
∑j∈R(ti)wj exp(zTj β)

)

Evaluating this term at wi = 1∀i gives us

∂

∂wk
∇βpℓ(β,w)∣

w=1
= δk (zk −

∑j∈R(tk) zj exp(zTj β)
∑j∈R(tk) exp(zTj β)

)

− ∑
i∣ti≤tk

δi
exp(zTkβ)

∑j∈R(ti) exp(zTj β)
(zk −

∑j∈R(ti) zj exp(zTj β)
∑j∈R(ti) exp(zTj β)

)

If we look at this for the mth element of β, we can rewrite it in terms of the Schoenfeld

residuals and the terms âim:

( ∂

∂wk
∇βpℓ(β,w)∣

w=1
)
m

= eSim − ∑
i∣ti≤tk

δi
exp(zTkβ)

∑j∈R(ti) exp(zTj β)
(zkm − âim)

This shows that the impact of leaving out one observation on the score equation is a) the

direct effect of the observed failure for the kth unit had on the likelihood and b) the indirect

effect of being excluded from the risk set; this impact occurs even if the kth patient is not

observed to fail. The second term also increases in magnitude as the time at risk increases,

so for patients at risk for a long time, this term typically outweighs the first term.
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4.5.6 Stratified Cox model

Sometimes the Cox model won’t be sufficiently flexible for our modeling needs. The issue

is that despite the baseline time-varying hazard being an unknown unspecified function, it

is assumed to describe the baseline hazard for all individuals in the population. This often

won’t hold for heterogeneous populations. The solution is to use a stratified Cox model,

which allows for the baseline hazard to depend on a known stratum. For example, let’s say

that the time course of a disease is known to vary by treatment. Then we would want a

model that could replicate that pattern. For patient i in treatment group j, let the function

j[i] ∶ Z+ → Z+ be the map between patient index and treatment group (AKA stratum)

membership. This is just a fancy way to say that there is a vector with n elements where

each element represents the stratum of the ith individual. Let there be J treatment groups

(i.e strata). Let the hazard ratio be defined as:

λij(t) = λj[i](t) exp(zTi β).

We can use the results from our derivation of the Cox partial likelihood to aid in our

derviation of the stratified Cox model’s likelihood.

The joint likelihood for the observed data {(ti, δi,zi, j[i]), i = 1, . . . , n} is

L({λj(t)},β) =
n

∏
i=1
(λj[i](ti) exp(zTi β))

δi
exp(− exp(zTi β)∫

∞

0
Yi(u)λj[i](u)du) (4.125)

We can rewrite this as the product over j and an inner product over the units i such that

j[i] = j:

L({λj(t)},β) =
J

∏
j=1
∏

i∣j[i]=j
(λj(ti) exp(zTi β))

δi
exp(− exp(zTi β)∫

∞

0
Yi(u)λj(u)du) (4.126)

Let each Λj(t) be unspecified right-continuous non-decreasing step functions that jump at

the collection of times {ti ∣ j[i] = j}.:

L({λj(t)},β) =
⎛
⎝

J

∏
j=1
∏

i∣j[i]=j
(λj(ti) exp(zTi β))

δi⎞
⎠
exp(−

J

∑
j=1
∫
∞
0 ∑i∣j[i]=j exp(zTi β)Yi(u)λj(u)du)

(4.127)

=
⎛
⎝

J

∏
j=1
∏

i∣j[i]=j
(λj(ti) exp(zTi β))

δi⎞
⎠
exp(−∑Jj=1∑k∣j[k]=j (∑i∣j[i]=j exp(zTi β)Yi(tk))λj(tk))

(4.128)

Solving the score equations for Equation (4.128) gives an expression for λj(tk):

λ̂j(tk) =
1

∑i∣R(tk),j[i]=j exp(zTi β)
(4.129)
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Plugging this back into the equations above gives

L(β) =
J

∏
j=1
∏

i∣j[i]=j
(

exp(zTi β)
∑k∣R(ti),j[k]=j exp(zTkβ)

)
δi

exp(−
n

∑
i=1
δi) (4.130)

Thus the likelihood is stratified by j, but additive over j. The likelihood enforces that

information about β is shared across all units, but the risk set to which each failure is

compared is limited to individuals within the same stratum.

4.5.7 Including time dependent variables in the Cox model

Let’s say we now have a variable Wi(t) that changes with t and we wish to include this

variable in our Cox model. There is no mathematical reason we cannot include this variable

in our model. The hazard ratio for an individual is now:

λi(t) = λ0(t) exp(zTi β + γWi(t))

where γ is the coefficient for the time-varying covariate. The first thing to note is that this is

no longer a proportional hazards model, because λi(t)/λ0(t) is not constant in time. Instead:

λi(t)/λ0(t) = exp(zTi β + γWi(t)).

Now we construct the partial likelihood.

PL(β) =
n

∏
i=1
(

exp(zTi β + γWi(ti))
∑j∈R(ti) exp(zTj β + γWj(ti))

)
δi

(4.131)

The complication arises in the denominator, where we need to know the values ofWj at time

ti.

This isn’t an issue for variables that are exogenous, or determined outside of the patient’s

survival process. One example is Wi(t) is the dose of a medicine that is administered as part

of clinical trial. This variable is controlled by investigators and is hypothetically known at

every time point for every patient.

But for variables that are related to the patients’ survival processes, we might not know

these variables at every point. Let’s say we’re running an influenza vaccine efficacy trial

and we are measuring antibody levels at regular visits after administration of vaccines. Our

primary outcome is influenza infection. Suppose that patient i becomes infected on day ti.

What values should we use for Wi(ti)? What about Wj(ti)?
Let’s say that we have Wi(ti − 1) for the ith participant, and we have Wj(ti − 1) and

Wj(ti + 1) for participants j ∈ R(ti). The value for the Wi(ti) should be the Wi(ti − 1)
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because we have no other choices. As for participants j ∈ R(ti), we should use theWj(ti−1),
though it may be tempting to useWj(ti+1). Using values in the future will bias our estimates

of γ because this does not accurately represent the relative risk for unit i at time ti. In fact,

using values in the past will also bias our estimates of γ, similarly because this does not

accurately represent the relative risk for unit i at time ti either. Solutions for this

We can still use the Breslow estimator for cumulative baseline hazard:

Λ̂0(t) = ∑
i∣ti≤t,δi=1

1

∑j∈R(ti exp(zTj β + γWj(ti))
(4.132)

Representing time-varying covariates in survival data

The way we represent time-varying covariates in a dataset is somewhat different than what

we’re used to with simpler survival data. The reason for this is that every individual has

different numbers of time-varying covariate values depending on their time to failure or

censoring. Thus a datatset in wide format might look like: An alternative is called the

id time status age atime1 atime2 atime3 a1 a2 a3

1 100 0 45 0 60 90 3.8 3.4 2.9

2 80 1 65 0 60 NA 2.8 2.4 NA

Table 4.1: Caption

counting process representation. The data now look like: These sort of data can be fitted

id obs time age a start stop status

1 1 0 45 3.8 0 60 0

1 2 60 45 3.4 60 90 0

1 3 90 45 2.9 90 100 0

2 1 0 65 2.8 0 60 0

2 2 60 65 2.4 60 80 1

Table 4.2: Caption

in the survival package using the following command: coxph(Surv(start, stop, status)

age + a, data = data).
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4.5.8 Solving the problem with time-varying covariates

This discussion follows Tsiatis and Davidian 2004. Imagine we had the following set of

random variables for each participant in a clinical trial:

{(Ti =min(Xi,Ci),zi,Wi(u) ∣ 0 ≤ u ≤ Ti), i = 1, . . . , n}.

If we observed this process for each individual, we could fit a Cox PH model as above:

PL(β) =
n

∏
i=1
(

exp(zTi β + γWi(ti))
∑j∈R(ti) exp(zTj β + γWj(ti))

)
δi

(4.133)

where we know Wi(u) exactly for each individual for their entire at risk period.

This is obviously not realistic; typically participants will have intermittent measurements

of biomarkers. An example might be CD4 counts, a measure of the concentration of T-cells

in the blood, which is an important measurement for those with HIV. A low CD4 count can

be an indication that an individual is at risk for AIDS; in fact a CD4 count of below 200 is

one of the diagnostic criteria for AIDS.

Furthermore, we typically will not observe any underlying “true” values of Wi(u), but
instead we’ll observe some noisy proxy for that variable, say W̃i(u). The solution to this is

to model Wi(u) as an unknown parameter that we learn about via observations of W̃i(u) at
different time points:

W̃i(uj) =Wi(uj) + εi(uj)

εi(uj) ∼ F

Wi(uj) = αi0 + αi1uj
(αi0, αi1) ∼ G

Then the hazard ratio for Xi would be:

λi(t) = λ0(t) exp(γ(αi0 + αi1t) + zTi β)

The key limitation for survival analysis is that we need access to Wi(u) for all u prior to

censoring or failure. This is only possible via a model for Wi(u). One could imagine a

nonparametric model taking the place of the simple linear model employed above. Despite

its simplicity, the model above is investigated in Tsiatis and Davidian 2004.
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4.6 Frailty and unobserved variation

Sometimes we want to account for extra variability that occurs at the patient level. This

is typically handled via a positive, time-invariant random variable, ξi, that multiplies the

hazard function:

λi(t) ∣ ξi = ξiλ0(t)ez
T
i β

Then the survival function, conditional on the random variable ξi is

Si(t ∣ ξi) = exp(−∫
t

0
ξiλ0(u)ez

T
i βdu) (4.134)

= exp(−∫
t

0
λ0(u)ez

T
i βdu)ξi (4.135)

If we assume that the frailty term is gamma distributed, we can recover an analytic form

for the survival function. Let Λ0(t) be the shared cumulative hazard so that the individual

cumulative hazard is wiΛ0(t)ez
T
i β.

Si(t) =
kθ

Γ(θ) ∫
∞

0
exp(−wΛ0(t)ez

T
i β)wθ−1 exp(−kw)dw

= kθ

Γ(θ) ∫
∞

0
wθ−1 exp(−(k +Λ0(t)ez

T
i β)w)dw

= kθ

Γ(θ)
Γ(θ)

(k +Λ0(t)ez
T
i β)θ

= ( k

k +Λ0(t)ez
T
i β
)
θ

In fact, the gamma frailty model allows for analytic forms for the density as well:

fi(t, δ) =
kθ

Γ(θ) ∫
∞

0
(wλ0(t)ez

T
i β)δ exp(−wΛ0(t)ez

T
i β)wθ−1 exp(−kw)dw

= (λ0(t)ez
T
i β)δ kθ

Γ(θ) ∫
∞

0
wθ+δ−1 exp(−(k +Λ0(t)ez

T
i β)w)dw

= (λ0(t)ez
T
i β)δ kθ

Γ(θ)
Γ(θ + δ)

(k +Λ0(t)ez
T
i β)θ+δ

= (θλ0(t)ez
T
i β)δ kθ

(k +Λ0(t)ez
T
i β)θ+δ

nb: Γ(θ + 1) = θΓ(θ)

= ( θλ0(t)ez
T
i β

k +Λ0(t)ez
T
i β
)
δ

( k

k +Λ0(t)ez
T
i β
)
θ

This shows that the hazard rate is

θλ0(t)ez
T
i β

k +Λ0(t)ez
T
i β
.
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One thing to note is that, while it is a proportional hazards model conditional on ξi, after

marginalizing over the frailty distribution it is no longer a proportional hazard model.

Something to note is that the marginal survival function when frailty is present is calcu-

lated as

Eξ [e−ξΛ(t)] .

This is the Laplace transform of ξ:

L(c) = Eξ [e−ξc] .

evaluated at Λ(t), or L(Λ(t)). Thus, if we know the Laplace transform for ξ, we’ll easily

know the marginal survival function.

This shows another way to get to the population hazard rate:

− ∂
∂t

log(S(t)) = − ∂
∂t

logL(Λ(t))

=
− ∂∂tL(Λ(t))
L(Λ(t))

= −λ(t)L(Λ(t))
′

L(Λ(t))

The Laplace transform of a gamma distribution is

L(c) = ( k

k + c
)
θ

Given the structure of the proportional frailty model, namely λi(t) = ξiλ0(t), it is natural to
enforce the constraint that E [ξ] = 1. This would mean that k = θ. The most common way

to paramterize this model is in terms of the variance, which in this case is θ
k2 =

1
θ . Let ν =

1
θ .

Then

L(c) = ( k

k + c
)
θ

= ( 1

1 + c/k
)
θ

= ( 1

1 + c/θ
)
θ

= (1 + νc)− 1
ν

With a baseline hazard rate of λ0(t), we get the following results:

S(t) = (1 + νΛ0(t))−
1
ν

E [λi(t)] =
λ0(t)

1 + νΛ0(t)

87



As ν or, equivalently the variance, increases, the population hazard decreases as time

increases.

This is related to the selection effect in survivors. Let’s say we want to understand

the distribution of frailty for people who survive past a certain time point. We can use

Laplace transforms to do so. Remember, S(t) = L(Λ(t)). If we calculate S(t ∣ X > s) and
we recognize the functional form as corresponding to the Laplace transform of a random

variable, Eξ [e−ξΛ(t)] then we can say that ξ is distributed according to the distribution

corresponding to the Laplace transform.

Thus, we want the survival function for people surviving past a time s, for t > s:

P (X > t ∣X > s) = P (X > t)
P (X > s)

(4.136)

= E [e−ξΛ(t)]
E [e−ξΛ(s)]

(4.137)

For the Gamma distribution we get

E [e−ξΛ(t)]
E [e−ξΛ(s)]

= (k +Λ(t))−θ (k +Λ(s))θ (4.138)

= (k +Λ(s)
k +Λ(t)

)
θ

(4.139)

= ( k +Λ(s)
k +Λ(s) + (Λ(t) −Λ(s))

)
θ

(4.140)

This conditional survival function is the Laplace transform of a Gamma random variable

with shape θ and rate k+Λ(s), evaluated at Λ(t)−Λ(s). What does this show us? We know

that the mean is no longer 1, comparing this to the Laplace transform for a Gamma random

variable parameterized with k and θ:

L(c) = ( k

k + c
)
θ

.

This variable has a mean of
θ

k
.

Thus for the survivors, the expected frailty is

θ

k +Λ(s)

This is declining as s increases. In the case where k = θ = ν−1, we get

ν−1

ν−1 +Λ(s)
= 1

1 + νΛ(s)
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4.6.1 Cox PH with omitted variables

This is an important point when thinking about the Cox proportional hazards model and

omitted variable bias. We can think of this problem similarly to frailty. Suppose the true

hazard function is the following:

λi(t) = λ0(t) exp(zi1β1 + zi2β2) (4.141)

but that we don’t observe zi2. Then we can think of the observed model as a frailty model:

λi(t) = ξiλ0(t) exp(zi1β1) (4.142)

where ξi = ezi2β2 . If we suppose that zi2 has a population distribution, then the marginal

hazard function is what we’ll be inferring when fitting a Cox model:

E [λi(t) ∣ zi1] = E [ezi2β2 ∣ zi1]λ0(t) exp(zi1β1) (4.143)

Assuming that β2 ≠ 0, we can use our results from above

E [λi(t) ∣ zi1] = −λ0(t) exp(zi1β1)
Lezi2β2 ∣zi1(Λ(t))′

Lezi2β2 ∣zi1(Λ(t))

This will not typically be a proportional hazards model anymore. Suppose, for argument’s

sake, that ezi2β2 ∣ zi1 was gamma distributed with a rate parameter depending on zi1. Then

E [λi(t) ∣ zi1] =
θλ0(t)ezi1β1

k(zi1) +Λ0(t)ezi1β1
.

and

E [λi(t) ∣ zi1]
E [λj(t) ∣ zj1]

= e(zi1−zj1)β1
k(zj1) +Λ0(t)ezj1β1
k(zi1) +Λ0(t)ezi1β1

This is clearly not a PH model, so any PH model we use will result in biased inferences and

bad coverage, though you can create scenarios in which the bias isn’t too bad, and coverage

can be corrected by using the sandwich covariance estimator.

4.6.2 Comparison between two risk groups with frailty

Suppose we have a high-risk group and a low-risk group, such that λ0H(t) = rλ0(t) for r > 1.
The individual hazard rates have frailties attached to them, so they are:

λiH(t) = ξiHrλ0(t)

λiL(t) = ξiLλ0(t)
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If ξiH and ξiL have the same density, namely a gamma with mean 1 and a variance equal to

ν, then the population relative risk is

E [λiH(t)]
E [λiL(t)]

= r 1 + νΛ0(t)
1 + rνΛ0(t)

This gives rise to a population hazard ratio comparison for the two groups, or relative risk,

that is declining in time. In this example the relative risk is always above 1, so we would

still be “right” directionally about individual relative risk from using the population relative

risk comparison, namely that the high risk group has higher risk than the lower group. This

is not always the case.

Suppose the low-risk group has a constant individual level hazard, but the high-risk group

has a hazard that starts at 2 and declines to just above 1:

λiH(t) = ξiH(1 + e−t)

λiL(t) = ξiL

This results in a population relative risk as:

E [λiH(t)]
E [λiL(t)]

= (1 − e−t) 1 + νt
1 + νt + ν(1 − e−t)

The odd thing is that the population relative risk starts at 2 and declines to below 1 as time

increases. This results in a paradox, namely that individual relative risk is always greater

than 1 but that population relative risk does not adhere to this relationship.

4.6.3 Frailty and influence functions

Remember back to Section 4.4.3 where we derived an expression for the influence function:

(−∇2
θℓ(θ) ∣θ=θ̂(1))

−1
∇θ log(fθ(ti, δi,zi)) ∣θ=θ̂(1) .

For a survival model with a frailty term, we have the following marginal likelihood:

fi(t, δ) = (exp(zTi β)λ0(t))δ ∫
∞

0
wδ exp(−wΛ0(t) exp(zTi β))f(w)dw (4.144)

Taking logs of this expression gives us

log fi(t, δ) = δ(zTi β + logλ0(t)) + log (∫
∞

0
wδ exp(−wΛ0(t) exp(zTi β))f(w)dw) (4.145)

Taking gradients of both sides with respect to β gives

∇β log fi(t, δ) = zi (δ − ∫
∞
0 w1+δΛ0(t) exp(−wΛ0(t) exp(zTi β) + zTi β)f(w)dw

∫
∞
0 wδ exp(−wΛ0(t) exp(zTi β))f(w)dw

) (4.146)
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simplifying a bit to

∇β log fi(t, δ) = zi (δ −Λ0(t) exp(zTi β)
∫
∞
0 w1+δ exp(−wΛ0(t) exp(zTi β))f(w)dw
∫
∞
0 wδ exp(−wΛ0(t) exp(zTi β))f(w)dw

) (4.147)

Compare this to the non-frailty version of the model:

fi(t, δ) = (exp(zTi β)λ0(t))δ exp(−Λ0(t) exp(zTi β)) (4.148)

log fi(t, δ) = δ(zTi β + logλ0(t)) −Λ0(t) exp(zTi β) (4.149)

with gradients

∇β log fi(t, δ) = zi (δ −Λ0(t) exp(zTi β)) (4.150)

If ξ ∼ Gamma(θ, k), we get

∫
∞

0
wδ exp(−wΛ0(t) exp(zTi β))f(w)dw =

kθ

Γ(θ) ∫
∞

0
exp(−w(Λ0(t)ez

T
i β + k))wθ+δ−1dw

= kθ

Γ(θ)
Γ(θ + δ)

(k +Λ0(t)ez
T
i β)θ+δ

= (θ
k
)
δ

( k

k +Λ0(t)ez
T
i β
)
θ+δ

and, noting that: Γ(θ + 1 + δ) = (θ + δ)Γ(θ + δ) = (θ + δ)θδΓ(θ)

∫
∞

0
wδ+1 exp(−wΛ0(t) exp(zTi β))f(w)dw =

kθ

Γ(θ) ∫
∞

0
exp(−w(Λ0(t)ez

T
i β + k))wθ+1+δ−1dw

= kθ

Γ(θ)
Γ(θ + 1 + δ)

(k +Λ0(t)ez
T
i β)θ

= (θ + δ)θ
δ

k1+δ
( k

k +Λ0(t)ez
T
i β
)
θ+1+δ

The ratio of these two expressions gives:

θ + δ
k +Λ0(t)ez

T
i β

(4.151)

Incorporating this into the expression above and substituting k = θ = ν−1 we get:

∇β log fi(t, δ) = zi (δ −Λ0(t) exp(zTi β)
1 + νδ

1 + νΛ0(t)ez
T
i β
) (4.152)

We can see that when δ = 1 the term:

1 + νδ
1 + νΛ0(t)ez

T
i β

shrinks the cumulative hazard term Λ0(t) exp(zTi β) towards zero if the cumulative hazard

term is greater than 1 and away from zero otherwise. When δ = 0 the term shrinks the

Λ0(t) exp(zTi β) towards zero. This should act to shrink extreme residuals towards zero.
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Chapter 5

Appendix

5.1 Map between Weibull parameterizations

Our course notes (and Klein, Moeschberger, et al. 2003) define the Weibull hazard as:

λ(t) = γαtα−1

Base R defines the Weibull parameterization for rweibull(n, shape=α, scale=σ) as

λ(t) = α
σ
( t
σ
)
α−1

The survival package parameterizes the Weibull, with intercept=µ, scale = τ , as

λ(t) = 1

τeµ/τ
t1/τ−1

Thus, we can see that the following identities hold:

γ = 1

σα
Ô⇒ σ = 1

γ1/α

γ = e−µ/τ Ô⇒ µ = −τ log(γ)

This also implies that regression coefficients from survreg are interpreted differently from

the typical interpretation from a proportional hazards model. The proportional hazards

Weibull model is typically written

γeβ
T ziαtα−1

But survreg parameterizes the model as

1

τe(µ+θ
T zi)/τ

t1/τ−1
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This means that:

β = −θ/τ

γ = e−µ/τ

Thus, a positive coefficient in the parametric hazard which indicates that the variable in-

creases hazard, all else being equal, will be negative in survreg’s coefficient results and vice

versa.
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