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Abstract

In order to meet regulatory approval, new vaccines typically must reduce the total
risk of a post-infection outcome like transmission, symptomatic disease, severe illness,
or death in randomized, placebo-controlled trials. Because infection is necessary
for a post-infection outcome, one can use principal stratification to partition the
total causal effect of vaccination into two causal effects: vaccine efficacy against
infection, and the principal effect of vaccine efficacy on post-infection outcomes in
the patients that would be infected under both placebo and vaccination. Despite the
importance of such principal effects to policymakers, these estimands are generally
unidentifiable, even under strong assumptions that are rarely satisfied in real-world
trials. We develop a novel method to nonparametrically point identify these principal
effects while eliminating the monotonicity assumption and allowing for measurement
error. Furthermore, our results allow for multiple treatments, and are general enough
to be applicable outside of vaccine efficacy. Our method relies on the fact that
many vaccine trials are run at geographically disparate health centers, and measure
biologically-relevant categorical pretreatment covariates. We show that our method
can be applied to a variety of clinical trial settings where vaccine efficacy against
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infection and a post-infection outcome can be jointly inferred. This can yield new
insights from existing vaccine efficacy trial data and will aid researchers in designing
new multi-arm clinical trials.

Keywords: 3 to 6 keywords, that do not appear in the title
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1 Introduction

Phase 3 randomized, placebo-controlled clinical trials are the gold-standard by which vac-

cine candidates are assessed for efficacy and safety. Such trials are an important source

of data about whether vaccines prevent outcomes such as infection and post-infection out-

comes like secondary transmission, severe illness, or death. For example, COVID-19 vac-

cination trials like Polack et al. (2020) and Baden et al. (2021) measured vaccine efficacy

against symptomatic disease, as well as severe illness and death. Principal stratification,

developed in Frangakis & Rubin (2002), may be used to partition the intention-to-treat ef-

fect of vaccination on an outcome like hospitalization into vaccine efficacy against infection

and vaccine efficacy against hospitalization given infection in the always-infected stratum;

these separate effects help policy makers optimize vaccination programs, communicate with

the public, allocate scarce resources, and guide future pharmaceutical therapeutic devel-

opment (Lipsitch & Kahn 2021). Methods to infer principal effects for vaccine efficacy

were first developed for continuous post-infection outcomes in Gilbert et al. (2003), Jemiai

et al. (2007), Shepherd et al. (2006, 2007), and further developed for binary post-infection

outcomes in Hudgens & Halloran (2006).

Unfortunately, vaccine efficacy against post-infection outcomes, binary or otherwise, is

not generally identifiable, even under the assumption that vaccine efficacy against infection

is non-negative almost-surely (monotonicity). Moreover, the method requires that both

infection and post-infection outcomes are perfectly measured. Neither monotonicity nor

error-free measurements can be assumed to hold in vaccine trials. Monotonicity can be

violated if a vaccine increases the per-exposure probability of infection for a participant

(Gilbert et al. 2003), which is possible in influenza vaccine trials where the vaccine targets a

different antigen than the circulating strain. Another way monotonicity can be violated is if
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vaccination increases exposure for certain participants. This can occur in a double-blinded

placebo-controlled study where the vaccine is reactogenic and leads to some participants

in the vaccine group becoming unblinded.

Measurement error is common in vaccine trials due to the imperfect nature of diagnostic

tests for infection (Kissler et al. 2021, Wang et al. 2020). Post-infection outcomes like

symptoms may also be observed with error. For example, in an influenza vaccine trial,

many different viruses circulate during influenza season that produce similar symptom

profiles.

We develop novel methodology to point identify vaccine efficacy against binary post-

infection outcomes without assuming monotonicity while allowing infection and post-infection

outcomes to be misclassified. Our framework immediately generalizes to multiple treat-

ments as we will show. We capitalize on the fact that many randomized trials for vaccines

are run as multi-center trials (i.e. geographically disparate study sites) (Francis 1982,

Longini Jr et al. 2000, The FUTURE II Study Group 2007, Halloran et al. 2010, Baden

et al. 2021, Polack et al. 2020), and typically measure pretreatment covariates relevant to

infection. We build on literature for identifying principal stratum effects with covariates

(Rubin 2006, Ding et al. 2011, Jiang et al. 2016), on inferring principal stratum effects in

multisite randomized trials (Wang, Richardson & Zhou 2017, Yuan et al. 2019, Luo et al.

2023), on using covariates to hone large-sample nonparametric bounds (Zhang & Rubin

2003, Grilli & Mealli 2008, Long & Hudgens 2013), and on identifying causal estimands

under unmeasured confounding (Miao et al. 2018, Shi et al. 2020). Our method also relates

to recent literature on inferring causal estimands under measurement error (Jiang & Ding

2020) and on identification of latent variable models (Ouyang & Xu 2022).

We show that our method can be used to design randomized trials for comparison of
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multiple vaccines against a control, which will be a necessity for public health agencies in

future pandemics as well as during the COVID-19 pandemic. Due to recent updates to

regulatory guidance from the European Medicines Agency, the authority that authorizes

pharmaceuticals in the European Union, principal effects are acceptable target estimands

in randomized clinical trials and principal stratification is an acceptable analysis method

for these trial data (Bornkamp et al. 2021, Lipkovich et al. 2022). This means that our

methodology can be used by regulatory agencies to design new clinical trials for vaccines

that target post-infection outcome VE. As noted by several authors, vaccine efficacy against

post-infection outcomes is mathematically analogous to the widely-studied survivor average

treatment effects (Ding et al. 2011, Tchetgen Tchetgen 2014, Ding & Lu 2017), so our

methodology can be readily used outside the domain of vaccine efficacy.

2 Vaccine efficacy in two-arm multi-center trials

Two-arm multi-center trials, or trials run in tandem across several disparate health centers

where each participant is randomly assigned to receive a vaccine or a placebo, are the

most common vaccine efficacy study designs. To fix ideas, we will consider the example

of an influenza vaccine trial, where researchers are interested in understanding vaccine

efficacy against influenza infection and vaccine efficacy against severe illness caused by

influenza infection. Crucially, it is not possible to perfectly observe influenza infection

or severe illness. Instead, researchers are limited to using imperfect tests for infection,

like polymerase chain reaction (PCR) tests, or serology to detect a participant’s infection

status. These methods measure infection with error, with varying levels of sensitivity and

specificity. For example, PCRs for COVID-19 have very high specificity, but tend to have

sensitivities in the range of 0.6 to 0.8 due to variation among patients in how the virus
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populates the nasal cavity, variation in swab quality, and viral RNA dynamics (Kissler

et al. 2021, Wang et al. 2020). Depending on the severity of the post-infection outcome,

these outcomes may also be mismeasured. For instance, a high proportion of participants

report symptoms in vaccine efficacy studies, despite many of these participants testing

negative for the target disease. In the presence of high-sensitivity tests, this necessarily

means that specificity of symptoms following infection is below 1. This is because it is

possible for participants to develop influenza-like severe illness from non-influenza viruses

during a clinical trial. Thus our framework assumes that observed infection and severe

illness are noisy proxies for true unobservable infection and severe illness states. The next

section outlines the data structure for each participant.

Suppose there are n participants in the trial, and we observe the following sextuplet

for each participant i: (S̃i, Ỹi, Zi,Ri,Ai,Xi), where S̃i is binary influenza test result, Ỹi

is observed binary severe illness status, and Zi is binary treatment assignment. Ri is a

categorical variable indicating the health center with which each participant is associated,

Ai is a discrete pre-treatment covariate related to infection under treatment and control,

and Xi is a univariate discrete pre-treatment covariate that may represent the intersection

of several distinct covariates like age, sex, occupation, and pre-existing conditions. Let Ri

take values from 1 to Nr, Ai take values from 1 to Na, and Xi take values from 1 to Nx.

Zi = 1 for individuals assigned to receive vaccination, and Zi = 0 for individuals assigned to

placebo.

Let Si be the latent influenza infection state, and Yi be the latent influenza-caused severe

illness state for each participant. We use the Neyman-Rubin causal model to define Si, and

Yi as partially-observed realizations of counterfactual outcomes (Neyman 1923, Rubin 1974,

1978, Holland 1986). For an extensive review of statistical approaches to causal inference
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through the lens of missing data see Ding & Li (2018). Let any potential treatment plan

for all n individuals in the trial be the length-n binary vector z, where the ith element is the

potential treatment status of the ith participant. Accordingly, each individual is associated

with a binary counterfactual infection outcome, Si(z), and a counterfactual severe illness

outcome, Yi(z, Si(z)), under treatment status z. Let the observed treatment status for all

n individuals in the trial be the length-n binary vector Z, where the ith element is the

assigned treatment of the ith participant.

Our causal model enforces the constraint that an uninfected individual cannot have

severe illness caused by influenza infection. In other words, post-infection outcomes are

defined such that they are caused by infection from a pathogen of interest (Gilbert et al.

2003, Hudgens & Halloran 2006). Then Yi(z,0) is undefined for all z, and is denoted as

Yi(z,0) = ⋆. Yi(z, Si(z)) is defined as a binary variable only when Si(z) = 1, or, equivalently,

Yi(z,1). For the remainder of the paper we assume that Si(z) = Si(z′) and Yi(z, Si(z)) =

Yi(z′, Si(z′)) if zi = z′i. Therefore, we assume the Stable Unit Treatment Value Assumption

(SUTVA) holds:

Assumption 2.1 (SUTVA). There is only one version of each treatment, and counterfac-

tual outcomes are a function of only a unit’s respective treatment status, z.

SUTVA can be satisfied for vaccine efficacy trials by restrictions on participants and

recruitment (Gilbert et al. 2003). Furthermore, recruited participants are a small frac-

tion of the total population at risk of infection (Zhang et al. 2009). Thus the vector

(Si(1), Yi(1, Si(1)), Si(0), Yi(0, Si(0))) is the complete definition of counterfactual out-

comes under vaccination and placebo for each individual in the trial.

A second assumption we will make for the rest of the paper is that the study is a

randomized experiment. This means that all trial participants have positive probabilities of
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being assigned to either vaccine or placebo, and that treatment assignment is unconfounded

(Imbens & Rubin 2015).

Assumption 2.2 (Random treatment assignment). The probability of being assigned to

treatment for each individual lies strictly between 0 and 1:

0 < P (Zi = 1 ∣ Si(1), Si(0), Yi(1, S(1)), Yi(0, Si(0))) < 1.

Treatment assignment is independent of all potential outcomes, or

Si(1), Si(0), Yi(1, Si(1)), Yi(0, Si(0)) ⊥⊥ Zi.

Given Assumption 2.1 and Assumption 2.2, the latent realized values of the counterfac-

tual variables are as follows:

Si = ZiSi(1) + (1 −Zi)Si(0), Yi = ZiYi(1, Si(1)) + (1 −Zi)Yi(0, Si(0)). (1)

A third condition that will be assumed to hold is that of non-differential measurement

errors for the influenza test result and the severe illness observation.

Assumption 2.3 (Non-differential Misclassification Errors). Misclassification errors for

S̃i, Ỹi are conditionally independent of all else given the true values Si, Yi or

S̃i ⊥⊥ Zi, S
P0
i ,Ri,Ai, Yi,Xi ∣ Si, Ỹi ⊥⊥ Zi, S

P0
i ,Ri,Ai, Si,Xi ∣ Yi.

Under Assumption 2.3, we may completely characterize the distributions of the noisy

outcomes S̃i, Ỹi via the following four unknown parameters snS = P (S̃i = 1 ∣ Si = 1), spS =

P (S̃i = 0 ∣ Si = 0) and snY = P (Ỹi = 1 ∣ Yi = 1), spY = P (Ỹi = 0 ∣ Yi = 0), or the respective

sensitivities and specificities for infection and the post-infection outcome. This assumption

can be loosened for infection misclassification as explored in Section 5.

We can thus define several causal estimands of interest related to the latent infection

and severe illness states, Si(z), Yi(z).

8



Definition 2.1 (Vaccine efficacy against infection).

VES = E [Si(0) − Si(1)] /E [Si(0)] , and

Definition 2.2 (Intention-to-treat vaccine efficacy against severe illness).

VEITT = E [Yi(0, Si(0))Si(0) − Yi(1, Si(1))Si(1)] /E [Yi(0, Si(0))Si(0)] .

where we let Yi(z, Si(z))Si(z) = 0 when Si(z) = 0.

Under Assumptions 2.1 to 2.2, the following identities hold

E [Si(z)] = E [Si ∣ Zi = z] , E [Yi(z)] = E [Yi ∣ Zi = z] .

Given the identities

E [Si = 1 ∣ Zi = z] =
E[S̃i=1∣Zi=z]+spS−1

spS+snS−1
, E [Yi = 1 ∣ Zi = z] =

E[Ỹi=1∣Yi=z]+spY −1

spY +snY −1

and known sensitivities and specificities, Definition 2.1, and Definition 2.2 are estimable

via plug-in ratio estimators.

2.1 Conditional effects and principal stratification

We might be tempted to define vaccine efficacy against severe illness by comparing the

rate of severe illness in vaccinated participants to that of the unvaccinated among pa-

tients who have been infected. These quantities are represented as E [Yi ∣ Si = 1, Zi = 1] and

E [Yi ∣ Si = 1, Zi = 0]. However, as shown in Frangakis & Rubin (2002), the set of partici-

pants {i ∣ Si = 1, Zi = 1} is different from the set of participants {i ∣ Si = 1, Zi = 0}, which

invalidates the contrast as a causal quantity. For a comparison to have a causal inter-

pretation, the only systematic difference between the quantities being compared may be

the difference in treatment, as in the numerator for VES: E [Si(0) − Si(1)]. The estimand
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VEnet
I = E [Yi(0) ∣ Si(0) = 1] −E [Yi(1) ∣ Si(1) = 1], however, includes both the difference in

treatment and the systematic difference between groups {i ∣ Si = 1, Zi = 1} and {i ∣ Si =

1, Zi = 0}. Thus, any difference between E [Yi(0) ∣ Si(0) = 1] and E [Yi(1) ∣ Si(1) = 1] could

plausibly be explained by the difference in individual traits between the two groups rather

than the difference treatment.

In terms of counterfactual outcomes, the set {i ∣ Si = 1, Zi = 1} includes trial participants

with (Si(1) = 1, Si(0) = 0) and those with (Si(1) = 1, Si(0) = 0), while the set {i ∣ Si = 1, Zi =

0} includes those (Si(1) = 1, Si(0) = 1) and those with (Si(1) = 0, Si(0) = 1). These groups

arise in the estimand VEnet
I as follows. In order to simplify our notation, we introduce the

principal stratum, SP0
i . Let it be defined as the ordered vector of counterfactual infection

outcomes for unit i, or

SP0
i = (Si(1), Si(0)), Si(z) ∈ {0,1}

and let the set of all principal strata be denoted as S. In this case S ≡ {0,1}2.

Furthermore let Yi(z) = Yi(z,1), and θjk = P (SP0 = (j, k)). Then:

VEnet
I = E [Yi(0) − Yi(1) ∣ SP0 = (1,1)] θ211

(θ11 + θ10)(θ11 + θ01)

+ (E [Yi(0) ∣ SP0 = (1,1)] −E [Yi(1) ∣ SP0 = (1,0)]) θ11θ10
(θ11 + θ10)(θ11 + θ01)

+ (E [Yi(0) ∣ SP0 = (0,1)] −E [Yi(1) ∣ SP0 = (1,1)]) θ11θ01
(θ11 + θ10)(θ11 + θ01)

+ (E [Yi(0) ∣ SP0 = (0,1)] −E [Yi(1) ∣ SP0 = (1,0)]) θ10θ01
(θ11 + θ10)(θ11 + θ01)

VEnet
I is a mixture of contrasts, one of which is a valid causal estimand, E [Yi(0) − Y (1) ∣ SP0

i = (1,1)].

This mixture is noncausal because some of the contrasts compare outcomes between prin-

cipal strata.

The solution is to compare potential severe illness outcomes within strata so that the

group in which the causal estimand is defined is homogeneous in terms of potential out-
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comes. These comparisons are called principal effects (Frangakis & Rubin 2002).

The only group in which a causal comparison can be made is the (1,1) stratum, oth-

erwise known as the always-infected stratum. This is because it is the only stratum in

which participants have a well-defined post-infection outcome under vaccination and under

placebo. Thus we may define vaccine efficacy against severe illness as:

Definition 2.3 (Vaccine efficacy against post-infection outcome).

VEI = E [Yi(0) − Yi(1) ∣ SP0
i = (1,1)] /E [Yi(0) ∣ SP0

i = (1,1)] .

The severe illness vaccine efficacy can be seen as the percent change in risk of severe

illness conferred by receiving a vaccine conditional on belonging to the always-infected

principal stratum. VEI is a principal effect as defined in Frangakis & Rubin (2002) because

it is conditional on a principal stratum.

The fundamental problem of causal inference (Holland 1986), namely that we cannot

observe all counterfactual outcomes for the same individual, prevents the development of a

simple ratio estimator because the observed data cannot determine which individuals belong

to the always-infected stratum (Hudgens & Halloran 2006). In fact, in the next section, we

will show that no single parameter of the probabilistic model implied by Assumptions 2.1

to 2.2 can be identified by the data, and that definition 2.3 is also not identified by the

data.

2.2 Principal effect identifiability

Identifiability is an asymptotic property of a statistical model characterized by a unique

map from parameter values to distribution functions. It is a key assumption for much of

asymptotic theory, including Bayesian posterior consistency, (Keener 2010, Van der Vaart

2000), and thus is useful to characterize. Rothenberg (1971) formally defines identifiability:
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Definition 2.4 (Parameter identifiability). Let θ ∈ Θ be a parameter indexing a parametric

density function f(y ∣ θ). θ is identifiable if there does not exist a parameter value θ′ ∈ Θ, θ′ ≠

θ for which the density f(y ∣ θ) = f(y ∣ θ′) for all observations y.

To determine the identifiability of vaccine efficacy against a post-infection outcome like

severe illness, we define how the counterfactual model governs the observed data distribu-

tion. Let psyz = P (Si = s, Yi = y ∣ Zi = z) be the observable probabilities of an infection

outcome s, a post-infection outcome y given a vaccination status z, and let ps+z be the

marginal probability of infection given vaccination, or P (Si = s ∣ Zi = z). We now define the

parameters for the counterfactual probability model. Let u ∈ {(0,0), (1,0), (0,1), (1,1)},

θu = P (SP0
i = u), and βu

z = P (Yi(z) = 1 ∣ SP0
i = u). The map from the model parameters to

the observable probabilities is:

p110 = θ(0,1)β(0,1)0 + θ(1,1)β(1,1)0 , p111 = θ(1,0)β(1,0)1 + θ(1,1)β(1,1)1

p100 = θ(0,1) (1 − β(0,1)0 ) + θ(1,1) (1 − β(1,1)0 ) , p101 = θ(1,0) (1 − β(1,0)1 ) + θ(1,1) (1 − β(1,1)1 ) .

The joint distribution of the observed data has only 4 independent quantities, but the

probability model has 7 parameters. Thus, the observable probabilities cannot be uniquely

mapped to counterfactual probability model parameters, and the model parameters are not

identified.

In this formulation VEI can be written in terms of the observable probabilities and

three unidentified parameters β
(0,1)
2 , β

(1,0)
1 , θ(1,1).

VEI = 1 −
β
(1,1)
1

β
(1,1)
0

= 1 −
p111 − β(1,0)1 (p1+1 − θ(1,1))
p110 − β(0,1)0 (p1+0 − θ(1,1))

. (2)

In fact, the structure of the model is such that no single counterfactual model parameter is

identifiable without restrictions on the principal stratum proportions. In order to identify
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Equation (2) with observed data, one needs to learn θ(1,1), β
(1,0)
1 , β

(0,1)
0 . The form of the

estimand suggests several identification strategies.

One strategy is to assume that no participant is infected when vaccinated and uninfected

when given the placebo. This assumption leads to θ(1,0) = 0, θ(1,1) = p1+1, and β
(1,1)
1 = p111

(Gilbert et al. 2003, Hudgens & Halloran 2006, Zhou et al. 2016). A consequence of this

assumption is that vaccine efficacy against infection is nonnegative with probability 1. VEI

then simplifies to

VEI = 1 −
p111

p110 + β(0,1)0 (p1+1 − p1+0)
, (3)

If we further assume that the distribution of severe illness is mean-independent of study

site, we can use the variation in infection rates by study site to identify β
(0,1)
0 (Jiang et al.

2016, Yuan et al. 2019).

In some trials monotonicity may be appropriate, but it is not an assumption that is made

when assessing vaccine efficacy against infection (Wang, Zhou & Richardson 2017, El Sahly

et al. 2021). Accordingly, two separate analyses must be performed to assess the two efficacy

estimands. The price for two-step procedures is two-fold: two-step estimators are often less

statistically efficient, and it may be harder to communicate results to stakeholders because

two sets of assumptions are needed. Assuming monotonicity also complicates using the

results of past vaccine efficacy trials as priors for future studies. If past trials have confidence

intervals for vaccine efficacy against infection that include negative values, it is not clear

how to incorporate this information into a prior over a parameter that excludes negative

values by design.

Monotonicity may be violated if some participants are inadvertently unblinded during

a vaccine trial due to post-vaccine side effects (also known as reactogenicity). Participants

who experience strong side effects may infer they have received the vaccine and may take
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fewer prophylactic precautions than if they had been in the placebo group.

Further complications arise from the fact that infection and post-infection outcomes

are observable only through proxy variables, S̃i and Ỹi with unknown sensitivities and

specificities. Let the observable probabilities qsyz = P (S̃i = s, Ỹi = y ∣ Zi = z) be defined as

qsyz = sns
S(1 − snS)1−ssny

Y (1 − snY )1−yp11z + sns
S(1 − snS)1−ssp1−y

Y (1 − spY )yp10z

+ sp1−s
S (1 − spS)ssp1−y

Y (1 − spY )yp0∗z.

As above, let q+yz = P (Ỹi = y ∣ Zi = z), qs+z = P (S̃i = s ∣ Zi = z), and β̃u
z = P (Ỹi(z) = 1 ∣

SP0
i = u). Under this probability model, the causal estimand of interest, or vaccine efficacy

against severe illness caused by influenza, is

VEI = 1 −
q+11 − (1 − spY ) − (β̃

(1,0)
1 − (1 − spY ))(

q1+1−(1−spS)
snS+spS−1

− θ(1,1))

q+10 − (1 − spY ) − (β̃
(0,1)
0 − (1 − spY ))(

q1+0−(1−spS)
snS+spS−1

− θ(1,1))
(4)

This expression involves nonidentifiable causal parameters β̃
(0,1)
0 , β̃

(1,0)
1 , θ(1,1) as well as the

unidentifiable measurement error parameters snS, spS, spY .

Thus, one cannot identify the estimand of interest without additional information. The

next section outlines how we can use the structure of multisite randomize trials for vaccine

efficacy to infer post-infection outcome vaccine efficacy.

2.3 Incorporating study-site and covariate information

Enrollment criteria for vaccine efficacy trials typically stipulate that patients with a history

of infection or a recent infection with the pathogen of interest are excluded from the trial.

Furthermore, multisite studies typically rely on study sites themselves to recruit patients

for the trial, which mean that site-specific full patient accrual may occur at different times

(Weinberger et al. 2001). Because enrollment is conditional on the patient-specific lack of

infection and intersite patient enrollment may systematically differ, patients at different

14



study sites can have different times at risk for infection prior to the study. To the extent

there is patient-level frailty in time to infection, this can lead to patients who are enrolled

later in the study as being less frail than those enrolled earlier. It is reasonable to assume

that patient frailty is related to principal strata, and thus it is reasonable to assume that

study site is not independent of principal strata given covariates.

Another reason to expect that the distribution of principal strata is not independent

of study site is variation in exposure to the pathogen of interest between study sites.

Variation in disease prevalence during the trial can lead to variation in rates of infection,

and, subsequently, principal strata at the study site. Multi-scale spatial variation of disease

prevalence is a hallmark of infectious disease (Bauer & Wakefield 2018). Thus, if study

sites are sufficiently separated geographically, it is reasonable to expect that the study

site variable is predictive of exposure during the duration of the trial. This variation in

exposure should lead to variation in principal strata due to differences in exposure.

Assumption 2.4 (Study site relevance). SP0
i is conditionally dependent on study site af-

filiation and baseline covariates, or Ri /⊥⊥ SP0
i ∣Xi.

This is a common assumption in multi-site principal stratification modeling, but it is

one that is especially reasonable in vaccine efficacy trials. See Yuan et al. (2019) and

references therein.

Another key feature of vaccine efficacy trials is that patients’ susceptibility to the

pathogen of interest is assessed via comprehensive baseline measurements of correlates

of protection. For example, in influenza trials it is common to measure the pre-season,

pre-vaccination (i.e. baseline) influenza antibody concentrations via hemagglutination in-

hibition (HAI) assays or neuraminidase inhibition (NAI) assays against different strains

of influenza (Monto et al. 2009). These assays are categorical measurements generated
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from serial two-fold dilutions of patient serum samples; high titer values are associated

with lower infection risk, and can be considered surrogates for past infections and/or past

influenza vaccinations (Zelner et al. 2019). Given the fact that the participants will be

inoculated against influenza, it is reasonable that the measurements of these values are

not independent of principal strata. We will call these measurements Ai, and assume that

Ai /⊥⊥ SP0
i ∣Xi. The structure of multisite randomized trials is such that we make two further

assumptions about the joint distribution of covariate values Ai and potential post-infection

outcomes (Yi(1), Yi(0)). Formally,

Assumption 2.5 (Covariate homogeneity). Ai is conditionally independent of the study

site and treatment assignment given the principal stratum and baseline covariates, or Ai ⊥⊥

Ri, Zi ∣ SP0
i ,Xi, and

Assumption 2.6 (Causal Homogeneity). Conditional on principal stratum SP0
i and Ai,Xi,

the potential outcomes (Yi(1), Yi(0)) are independent of Ri, or (Yi(1), Yi(0)) ⊥⊥ Ri ∣ SP0
i ,Ai,Xi.

These two assumptions are crucial for the nonparametric identifiability of vaccine ef-

ficacy against post-infection outcomes. Both assumptions depend on the validity of the

measurements Ai being a good proxy for infection risk frailty and post-infection outcome

frailty conditional on principal stratum.

Assumption 2.5 is equivalent to assuming that individuals’ covariate measurements Ai

are exchangeable within strata defined by (Xi = x,SP0
i = u); it is thus similar to the

assumption of no unmeasured confounders in observational trials. The randomization of

treatment assignment assures the independence of Ai and Zi. The conditional independence

of Ai and Ri given other baseline covariates and principal stratum means that Ai must

measure baseline biological predisposition to infection and predisposition for vaccine efficacy

against infection; if these characteristics are captured by Ai, then conditional on principal
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stratum, or the joint measurement of infection under placebo and infection under treatment,

there should be no variation between study sites. The independence assumption may be

characterized as Ai being a measure of susceptibility to infection, while Ri affects the frailty

of infection conditional on being susceptible. A priori, there is no reason to assume that

susceptibility to infection, conditional on principal stratum varies by study site. (Longini

& Halloran 1996, Aalen et al. 2008).

Assumption 2.6 is equivalent to assuming conditional exchangeability of Yi(z) within

strata defined by (Xi = x,SP0
i = u,Ai = k) (Saarela et al. 2023). Assumption 2.6 is commonly

assumed in vaccine efficacy trials (Tsiatis & Davidian 2022), and is justifiable given the

conditioning on Ai and other pretreatment covariates. We may loosen Assumption 2.5 by

employing a parametric model for Ai ∣ Ri, SP0 ,Xi. This is discussed more in Section 3.2.

Under Assumptions 2.3 to 2.6, we can define the joint distribution of influenza test

results, reported severe illness, and pre-season antibody concentration given treatment

assignment and study site membership.

Let θr,xu = P (SP0
i = u ∣ Ri = r,Xi = x) for u ∈ {(0,0), (1,0), (0,1), (1,1)}. Let uz =

P (Si(z) = 1 ∣ SP0
i = u). Let a

u,x
k = P (Ai = k ∣ SP0

i = u,Xi = x), and βu,x
z,k = P (Yi(z) = 1 ∣ SP0

i =

u,Ai = k,Xi = x). Further, recall snS = P (S̃i = 1 ∣ Si = 1), spS = P (S̃i = 0 ∣ Si = 0) and snY =

P (Ỹi = 1 ∣ Yi = 1), spY = P (Ỹi = 0 ∣ Yi = 0). Let the probability of observing an influenza

test result s and a covariate level k given treatment assignment z, study site membership

r and pretreatment covariates x, or qsk∣zrx = P (S̃i = s,Ai = k ∣ Zi = z,Ri = r,Xi = x), be

defined as:

qsk∣zrx = sns
S(1 − snS)1−s∑u∣u∈S,uz=1 a

u,x
k θr,xu + sp1−s

S (1 − spS)s∑u∣u∈S,uz=0 a
u,x
k θr,xu .

Similarly, we define the probability of observing a reported severe illness outcome y

given treatment assignment z, study site membership r, and pretreatment covariates x, or
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qy∣kzrx = P (Ỹi = y ∣ Zi = z,Ri = r,Ai = k,Xi = x), as:

qy∣kzrx = sny
Y (1 − snY )1−y∑u∣u∈S,uz=1 β

u,x
z,k θ

r,x
u

+ sp1−y
Y (1 − spY )y(∑u∣u∈S,uz=1(1 − β

u,x
z,k )θ

r,x
u +∑u∣u∈S,uz=0 θ

r,x
u ).

In designing a clinical trial in which a primary or secondary endpoint is severe illness,

limiting the definition of severe illness to encompass only the most extreme illness can at

once increase the sensitivity and specificity of reporting.

2.3.1 Identifiability of expanded model

Given assumptions Assumptions 2.3 to 2.6, we will show that the joint variation in ob-

served antibody concentrations and infection rates across study sites identifies the joint

distribution of principal strata proportions and covariate values by study site. Then, given

sufficient variation in principal strata proportions between study sites, the distribution of

post-infection potential outcomes can be identified as well.

The proof depends on representing the observed distribution qsk∣zr as a 3-way array and

using a modified tensor decomposition uniqueness theorem from Kruskal (1977). Kruskal’s

theorem defines sufficient conditions for the uniqueness of the triple product decomposition

of L, where this product is defined in Definition 2.5.

Definition 2.5 (Array triple product). Let the array triple product with resulting array

L ∈ RI×J×K be defined between matrices A ∈ RI×M , B ∈ RJ×M , C ∈ RK×M . The operation is

represented as L = [A,B,C]. As a result, the (i, j, k)th element of L, Lijk, is defined the

sum of three-way-products of elements aim, bjm, ckm, i.e.:

Lijk =
M

∑
m=1

aimbjmckm.

The sufficient conditions concern the Kruskal ranks of the matrices A,B,C, defined in

Definition 2.6.
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Definition 2.6 (Kruskal rank). Let the Kruskal rank of a matrix B ∈ RI×M be kB ∈

[0,1,2, . . . ,M], and let kB be the maximum integer such that every set of kB columns

of B are linearly independent.

Kruskal rank is stricter than matrix rank. To see why, consider a matrix with M

columns of which two are repeated. At most the rank of the matrix can be M − 1, but

Kruskal rank can be at most 1. A corollary of the definition is that if a matrix is full

column rank, its Kruskal rank equals its column rank.

Let L be the 3-way array representing qsk∣zrx, where we fix Xi = x for each unique

value of Xi. The array’s dimensions are 4 ×Na ×Nr and is defined so that the (j, k, r)th

element P (Si = 1 (j ≤ 2) ,Ai = k ∣ Z = j − 1 mod 2,Ri = r,Xi = x). If we look at the matrix

that results from fixing the third array index, also known as the 3-slab and denoted as

Lr ∈ R4×Na , we can see a possible decomposition of this array. Let ∑uz=s a
u,x
k θr,xu denote the

sum over elements u ∈ {(0,0), (1,0), (0,1), (1,1)} such that P (Si(z) = 1 ∣ SP0
i = u). The let

Lr be defined as

(a = 1) . . . (a = Na)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1 − spS)∑u0=0 a
u,x
1 θr,xu + snS ∑u0=1 a

u,x
1 θr,xu . . . (1 − spS)∑u0=0 a

u,x
Na

θr,xu + snS ∑u0=1 a
u,x
Na

θr,xu (s = 1, z = 0)

(1 − spS)∑u1=0 a
u,x
1 θr,xu + snS ∑u1=1 a

u,x
1 θr,xu . . . (1 − spS)∑u1=0 a

u,x
Na

θr,xu + snS ∑u1=1 a
u,x
Na

θr,xu (s = 1, z = 1)

spS ∑u0=0 a
u,x
1 θr,xu + (1 − snS)∑u0=1 a

u,x
1 θr,xu . . . spS ∑u0=0 a

u,x
Na

θr,xu + (1 − snS)∑u0=1 a
u,x
Na

θr,xu (s = 0, z = 0)

spS ∑u1=0 a
u,x
1 θr,xu + (1 − snS)∑u1=1 a

u,x
1 θr,xu . . . spS ∑u1=0 a

u,x
Na

θr,xu + (1 − snS)∑u1=1 a
u,x
Na

θr,xu (s = 0, z = 1)

.

This structure allows L to be defined as the triple product of three matrices:

P2(S̃ ∣ Z,SP0) ∈ R4×4, P x
2 (A ∣ SP0) ∈ RNa×4, P x

2 (SP0 ∣ R) ∈ R4×Nr .
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The matrix P2(S̃ ∣ Z,SP0) is defined as

P2(S̃ ∣ Z,S
P0
) =

(0,0) (1,0) (0,1) (1,1)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1 − spS 1 − spS snS snS (s = 1, z = 0)

1 − spS snS 1 − spS snS (s = 1, z = 1)

spS spS 1 − snS 1 − snS (s = 0, z = 0)

spS 1 − snS spS 1 − snS (s = 0, z = 1)

. (5)

The matrices P x
2 (A ∣ SP0), P x

2 (SP0 ∣ R) are defined

P x
2 (A ∣ S

P0
) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a
(0,0),x
1 a

(1,0),x
1 a

(0,1),x
1 a

(1,1),x
1

a
(0,0),x
2 a

(1,0),x
2 a

(0,1),x
2 a

(1,1),x
2

⋮ ⋮ ⋮ ⋮

a
(0,0),x
Na

a
(1,0),x
Na

a
(0,1),x
Na

a
(1,1),x
Na

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, P x
2 (S

P0
∣ R) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θr1,x
(0,0)

θr2,x
(0,0)

. . . θ
rNr ,x

(0,0)

θr1,x
(1,0)

θr2,x
(1,0)

. . . θ
rNr ,x

(1,0)

θr1,x
(0,1)

θr2,x
(0,1)

. . . θ
rNr ,x

(0,1)

θr1,x
(1,1)

θr2,x
(1,1)

. . . θ
rNr ,x

(1,1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We show in Lemma C.3 that when P2(S̃ ∣ Z,SP0), P x
2 (A ∣ SP0), P x

2 (SP0 ∣ R) satisfy

certain Kruskal rank conditions, along with reasonable conditions on snS and spS, the joint

distributions P (SP0
i = u,Ai = k ∣ Zi = z,Ri = r,Xi = x), P (Ỹi(z) = 1 ∣ SP0

i = u,Ai = k,Xi = x)

are strictly identified. Furthermore, we show that snS, spS, and spY are also identified.

Formally,

Theorem 2.7 (Identifiability of causal model parameters). Suppose that Assumptions 2.3

to 2.6 hold. If both snS, spS lie in [0,1/2) or both lie in (1/2,1], P x
2 (A ∣ SP0) is Kruskal

rank 3 or greater for all x and P x
2 (SP0 ∣ R) is rank 4 for all x, then both snS, spS are

identifiable, as are the following distributions: P (SP0
i = (m,n) ∣ Ri = r,Xi = x), P (Ai = k ∣

SP0
i = (m,n),Xi = x), k ∈ {1, . . . ,Na}, r ∈ {1, . . . ,Nr}, (m,n) ∈ {(0,0), (1,0), (1,0), (1,1)}.

Furthermore, if snY is unknown (known), distributions P (Yi(z) = 1 ∣ SP0
i = u,Ai = k,Xi = x)

are identifiable up to an unknown (known) common constant, rY = snY + spY − 1.

A consequence of Theorem 2.7 is that the marginal distribution of reported severe illness
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among the always-infected stratum is identified, or P (Ỹi(z) = 1 ∣ SP0
i = (1,1),Xi). To see

why, note that the conditional counterfactual distributions for Ỹi(z) ∣ SP0
i = (1,1),Ai,Xi

are identified, along with the distribution of Ai ∣ SP0
i = (1,1),Xi. The following corollary

marginalizes over Ai to yield identifiability of the population distribution Ỹi(z) ∣ SP0
i =

(1,1),Xi:

Corollary 2.8. By the conditions set forth in Theorem 2.7, P (Ai = k ∣ SP0
i = (1,1),Xi = x)

and P (Ỹi(z) = 1 ∣ SP0
i = (1,1),Ai = k,Xi = x) are identifiable for k ∈ {1, . . . ,Na}. Let

P (Ỹi(z) = 1 ∣ SP0
i = (1,1),Xi = x) = ∑k P (Ai = k ∣ SP0

i = (1,1),Xi = x)P (Ỹi(z) = 1 ∣ SP0
i =

(1,1),Ai = k,Xi = x). Then P (Ỹi(z) = 1 ∣ SP0
i = (1,1),Xi = x), P (Ai = k ∣ SP0

i = (1,1),Xi =

x), and P (Ỹ (z)i = 1 ∣ SP0
i = (1,1),Ai = k,Xi = x) are identifiable.

Given that the marginal distribution of reported severe illness for the always-infected

stratum is identified, along with spY , we can write the estimand of interest, the vaccine

efficacy against severe illness within the always-infected stratum explicitly. To see why,

note that for any latent binary random variable Q and its measurement, Q̃ with associated

sensitivity snQ and specificity spQ, we have the following identity:

P (Q = 1) =
P (Q̃ = 1) − (1 − spQ)

snQ + spQ − 1
. (6)

Then employing Equation (6) yields:

VEI = 1 −
E [Yi(1) ∣ SP0

i = (1,1)]
E [Yi(0) ∣ SP0

i = (1,1)]

= 1 −
E [Ỹi(1) ∣ SP0

i = (1,1)] − (1 − spY )
E [Ỹi(0) ∣ SP0

i = (1,1)] − (1 − spY )
.

We have thus shown that VEI is point identified without needing to identify snY . This

estimand marginalizes over the population distribution of Xi, which may be known, or may

be estimated.
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Moreover, the identifiability of the conditional counterfactual distributions P (Ỹi(z) =

1 ∣ SP0
i = (1,1),Ai = k,Xi = x) allows for causal effect heterogeneity by covariate Ai.

Definition 2.7 (Conditional VE against post-infection outcome Y ).

VEI(k) = 1 −
E [Ỹi(1) ∣ SP0

i = (1,1),Ai = k] − (1 − spY )
E [Ỹi(0) ∣ SP0

i = (1,1),Ai = k] − (1 − spY )

Again this estimand marginalizes over Xi.

2.4 Asymptotic variance for VEI

For the moment, suppose that our target of inference in VEI . Let β̂
(1,1)
z be the estimator for

E [Ỹi(z) ∣ SP0
i = (1,1)] and let ŝpY be the estimator for (1−spY ). One can show that a valid

estimator for the vector (spY , β
(0,1)
z , β

(1,0)
z , β

(1,1)
z ) is the least-squares estimator obtained by

projecting the site-specific counts of severe illness conditional on Zi = z onto the column

space of the estimated matrix P x
Nz
(SP0 ∣ R), or the proportions of principal strata by study

site. This estimator naturally marginalizes over Ai. The plug-in estimator therefore has

the form

V̂EI = 1 −
β̂
(1,1)
1 − ŝpY

β̂
(1,1)
0 − ŝpY

.

We can use the delta method to characterize the asymptotic variance of the estimator.

Var (V̂EI) =
1

(rY β(1,1)0 )2
⎛
⎝
Var (β̂(1,1)1 ) + (1 −VEI)2Var (β̂(1,1)0 ) +VE2

IVar (ŝpY )

− 2(1 −VEI)Cov (β̂(1,1)1 , β̂
(1,1)
0 ) − 2VEICov (β̂(1,1)1 , ŝpY )

+ 2VEICov (β̂(1,1)0 , ŝpY )
⎞
⎠
.
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Given the symmetry of the estimators, Cov (β̂(1,1)0 , ŝpY ) = Cov (β̂
(1,1)
1 , ŝpY ), so the asymp-

totic variance simplifies to

Var (V̂EI) =
1

(rY β(1,1)0 )2
⎛
⎝
Var (β̂(1,1)1 ) + (1 −VEI)2Var (β̂(1,1)0 ) +VE2

IVar (ŝpY )

− 2(1 −VEI)Cov (β̂(1,1)1 , β̂
(1,1)
0 )

⎞
⎠
.

Under the causal null hypothesis of β
(1,1)
0 = β

(1,1)
1 Ô⇒ VEI = 0, this expression

simplifies to the following

Var (V̂EI) =
1

(rY β(1,1)0 )2
⎛
⎝
Var (β̂(1,1)1 ) +Var (β̂(1,1)0 ) − 2Cov (β̂(1,1)1 , β̂

(1,1)
0 )

⎞
⎠
.

We show in the appendix that the asymptotic variance-covariance matrix for (β̂(1,1)z , ŝpY )

can be partly characterized in terms of Nr and the Moore-Penrose inverse of P x
Nz
(SP0 ∣ R).

As shown in Section I.0.1, the variance of the estimator increases in the number of study

sites, Nr, though if we consider study sites to be drawn from a superpopulation of study

sites as they do in Yuan et al. (2019), then increasing the number of study sites allows for

more precise estimation of the matrix of second moments of P x
Nz
(SP0 ∣ R).

The identifiability results presented in this section are in fact a special case of identifia-

bility results related to multiarm multisite trials. Because of this, the discussion of the proof

and the implications are deferred until the next section, which outlines the generalization

to two or more treatments.

3 Vaccine efficacy in multiarm, multisite trials

Many vaccine trials involve more than two treatment arms. For example, Monto et al.

(2009) compares the absolute and relative vaccine efficacy of an inactivated influenza vac-

cine and a live attenuated influenza vaccine against two placebo arms. The results of trials
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such as these can inform public health vaccine policy as well as suggest new directions for

vaccine development.

Mirroring the notation presented in Section 2, for n total participants we observe the

following sextuplet for each participant i: (S̃i, Ỹi, Zi,Ri,Ai,Xi). Like Section 2, S̃i, Ỹi are

imperfectly observed proxies for true infection status, Si, and true severe illness status, Yi.

In contrast to Section 2, Zi is a categorical variable with Nz ≥ 2 categories representing

treatment assignment. Let Zi ∈ {z1, . . . , zNz}. The variables Ri,Ai,Xi, study site mem-

bership, pretreatment measurement of susceptibility to infection, and other pretreatment

covariates, are defined as in Section 2. True infection status Si and true severe illness

status Yi are assumed to be partially-observable realizations of counterfactual variables

Si(z), Yi(z, Si(z)), where z is a given n-vector of treatment assignments for each individ-

ual. The counterfactual variables are so-named because these variables are defined for

any z, which is possibly different from the collection of observed treatment assignments

{Z1, . . . , Zn}. Our causal model enforces the constraint that Yi(z,0) = ⋆ for all z, meaning

that severe illness is caused by an influenza infection; without an influenza infection there

can be no severe illness caused by influenza.

Like Section 2, we assume SUTVA, as is typical in vaccine trials (Gilbert et al. 2003); we

also continue to assume Non-differential Misclassification Errors. Furthermore, we assume

random treatment assignment in the multiarm setting.

Assumption 3.1 (Random treatment assignment multiple treatment). The probability of

being assigned to treatment for each individual lies strictly between 0 and 1:

0 < P (Zi = zj ∣ Si(z1), Yi(z1, S(z1)), . . . , Si(zNz), Yi(zNz , S(zNz))) < 1

for all zj ∈ {z1, . . . , zNz}.
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Treatment assignment is independent of all potential outcomes, or

Si(z1), Yi(z1, S(z1)), . . . , Si(zNz), Yi(zNz , S(zNz)) ⊥⊥ Zi.

Assumption 2.1 and assumption 3.1 allows us to write the variables Si, Yi as

Si = ∑Nz
j=1 Si(zj)1 (Zi = zj) , Yi = ∑Nz

j=1 Yi(zj, Si(zj))1 (Zi = zj) . (7)

In keeping with the expanded set of treatments, let principal stratum, SP0
i , be defined

as the ordered Nz-vector of counterfactual infection outcomes for unit i, or

SP0
i = (Si(z1), Si(z2), . . . , Si(zNz)), Si(zj) ∈ {0,1}, 1 ≤ j ≤ Nz,

and let the set of all principal strata be denoted as S. When the set of principal strata

is not restricted S ≡ {0,1}Nz . As in Section 2.2, let u be an element of S, and let uj ≡

P (Si(zj) = 1 ∣ SP0
i = u).

It is typical to restrict the set of principal strata as the size of S grows because the

dimension of the parameter space grows quickly. For example, monotonicity assumptions

can be generalized to three treatments, as in Yuan et al. (2019) or Cheng & Small (2006).

Another strain of research places strong assumptions on treatment ordering, such as Luo

et al. (2023) and Wang, Richardson & Zhou (2017). We do not make such assumptions

and allow for an unrestricted space of principal strata.

In the multiarm setting, we will modify our definition for the vaccine efficacy estimands.

Vaccine efficacy against infection is now defined for any two treatments, zj and zk:

Definition 3.1 (Vaccine efficacy against infection zj versus zk).

VES,jk = 1 −E [Si(zj)] /E [Si(zk)] .

Vaccine efficacy against severe illness is well-defined for any principal stratum u and

any two treatments zj and zk such that P (Si(zj) = Si(zk) = 1 ∣ SP0
i = u). The principal
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strata that admit a well-defined principal effect is defined as:

U ≡ {u ∈ S ∣ ∑2Nz

u=1uu > 1}.

Then for any u ∈ U we may define the following principal effect for any two treatments zj

and zk such that ujuk = 1:

Definition 3.2 (Vaccine efficacy against post-infection outcome Y ).

VEu
I,jk = 1 −E [Yi(zj) ∣ SP0

i = u] /E [Yi(zk) ∣ SP0
i = u] .

VEu
I,jk is a principal effect as defined in Frangakis & Rubin (2002) because it is condi-

tional on a principal stratum u. For example, when Nz = 3, there are 8 principal strata,

three of which would admit comparisons between two treatments: (1,1,0), (0,1,1), (1,0,1),

and one of which would allow for comparisons between all three treatments: (1,1,1). For

patients with SP0
i = (1,1,0), u1 = 1, u2 = 1, u3 = 0. Given that u1u2 = 1, we may compare

Y (z1) to Y (z2) among this group of patients. Like the two-arm setting, in which SP0
i = (1,1)

is the “always-infected” stratum, the stratum SP0
i = {1}Nz is the “always-infected” stratum

in the multiarm trial.

To give a concrete example about how one might use the expanded definition of vaccine

efficacy against severe illness, we will use Monto et al. (2009) as an example. Monto et al.

(2009) treated the four-arm trial as a three-arm trial by combining the two separate placebo

arms into one unified arm. Given that both placebo arms received inert treatments, albeit

via different routes of administration, this is a reasonable assumption. The aim of the trial

was to measure the absolute and relative efficacies against symptomatic influenza; thus, it

is of interest to infer the relative efficacy against severe illness given influenza infection for

the two competing vaccines. The following causal estimand captures this effect:

E [Yi(z2) ∣ SP0
i = (1,1,1)] −E [Yi(z3) ∣ SP0

i = (1,1,1)]
E [Yi(z1) ∣ SP0

i = (1,1,1)]
= VE(1,1,1)I,31 −VE(1,1,1)I,21 . (8)
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As in Section 2, we will assume Causal Homogeneity:

Assumption 3.2 (Causal Homogeneity for multiarm trials). Conditional on principal stra-

tum SP0
i ,Ai, and Xi the potential outcomes (Yi(z1), . . . , Yi(zNz)) are independent of Ri, or

(Yi(z1), . . . , Yi(zNz)) ⊥⊥ Ri ∣ SP0
i ,Ai,Xi.

In order to expand the causal model, we shall update some of the notation introduced

in Section 2 to the multiarm trial. Let θr,xu = P (SP0
i = u ∣ Ri = r,Xi = x) where u ∈ {0,1}Nz ,

and βu,x
j,k = P (Yi(zj) = 1 ∣ SP0

i = u,Ai = k,Xi = x). Let uj = P (Si(zj) = 1 ∣ SP0
i = u). Then

βu,x
j,k is only defined for j such that uj = 1. Further, let au,xk = P (Ai = k ∣ SP0

i = u,Xi = x).

Let qsk∣jrx = P (S̃i = s,Ai = k ∣ Zi = z,Ri = r,Xi = x) be defined as

qsk∣jrx = sns
S(1 − snS)1−s∑u∣u∈S,uj=1 a

u,x
k θr,xu + sp1−s

S (1 − spS)s∑u∣u∈S,uj=0 a
u,x
k θr,xu .

The observable probabilities qy∣kjrx = P (Ỹi = y ∣ Zi = zj,Ri = r,Ai = k,Xi = x), which

marginalize over the observed infection test results, are defined:

qy∣kjrx = sny
Y (1 − snY )1−y∑u∣u∈S,uj=1 β

u,x
j,k θ

r,x
u

+ sp1−y
Y (1 − spY )y(∑u∣u∈S,uj=1(1 − β

u,x
j,k )θ

r,x
u +∑u∣u∈S,uj=0 θ

r,x
u )

3.1 Identifiability of multiarm, multi-site trials

Our strategy will be the same as in Section 2. Fixing x, we can rewrite qsk∣jrx as a 3-way

array, L and subsequently use Kruskal rank conditions to characterize the uniqueness of the

array decomposition. Let L be the 3-way array representing qsk∣jrx. The array’s dimensions

are 2Nz ×Na ×Nr and is defined so that the (j, k, r)th element P (Si = 1 (j ≤ Nz) ,Ai = k ∣
Z = zj−1 mod Nz+1,Ri = r,Xi = x). Again, we look to the 3-slab, denoted as Lr ∈ R2Nz×Na ,

to yield a possible decomposition of this array. As above, let ∑uz=s a
u,x
k θr,xu denote the sum
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over elements u ∈ S such that P (Si(z) = 1 ∣ SP0
i = u). Let Lr be defined as

(a = 1) . . . (a = Na)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1 − spS)∑uz1
=0 a

u,x
1 θr,xu + snS ∑uz1

=1 a
u,x
1 θr,xu . . . (1 − spS)∑uz1

=0 a
u,x
Na

θr,xu + snS ∑uz1
=1 a

u,x
Na

θr,xu (s = 1, z = z1)

(1 − spS)∑uz2
=0 a

u,x
1 θr,xu + snS ∑uz2

=1 a
u,x
1 θr,xu . . . (1 − spS)∑uz2

=0 a
u,x
Na

θr,xu + snS ∑uz2
=1 a

u,x
Na

θr,xu (s = 1, z = z2)

⋮ ⋱ ⋮ ⋮

(1 − spS)∑uzNz
=0 a

u,x
1 θr,xu + snS ∑uzNz

=1 a
u,x
1 θr,xu . . . (1 − spS)∑uzNz

=0 a
u,x
Na

θr,xu + snS ∑uzNz
=1 a

u,x
Na

θr,xu (s = 1, z = zNz )

spS ∑uz1
=0 a

u,x
1 θr,xu + (1 − snS)∑uz1

=1 a
u,x
1 θr,xu . . . spS ∑uz1

=0 a
u,x
Na

θr,xu + (1 − snS)∑uz1
=1 a

u,x
Na

θr,xu (s = 0, z = z1)

spS ∑uz2
=0 a

u,x
1 θr,xu + (1 − snS)∑uz2

=1 a
u,x
1 θr,xu . . . spS ∑uz2

=0 a
u,x
Na

θr,xu + (1 − snS)∑uz2
=1 a

u,x
Na

θr,xu (s = 0, z = z2)

⋮ ⋱ ⋮ ⋮

spS ∑uzNz
=0 a

u,x
1 θr,xu + (1 − snS)∑uzNz

=1 a
u,x
1 θr,xu . . . spS ∑uzNz

=0 a
u,x
Na

θr,xu + (1 − snS)∑uzNz
=1 a

u,x
Na

θr,xu (s = 0, z = zNz )

Following the same logic as Section 2, we can define matrices encoding the distribution

of principal strata by study site, and the distribution of pre-season titers by principal

stratum. In order to define these matrices such that they share a common ordering along

the axes defined by the principal strata, we shall use the the natural ordering of the binary

vectors SP0
i : the base-10 representation of the principal stratum. In order to formalize this

ordering, we define a map, ϖm(j), which generates the m-digit binary representation of

the integer j as a length-m binary vector. We also define its inverse, ϖm(u)−1, where u is

an element of S.

Definition 3.3 (Base-10 to binary map). Let the operator ϖm be defined as ϖm(⋅) ∶ j →

{0,1}m, j ∈ N, j ≤ 2m−1 with elements ϖm(j)i ∈ {0,1}, so ϖm(j) is the base-2 representation

of j with m digits represented as a binary m-vector. The binary representation is indexed

so the ith element of the vector corresponds to the digit for 2i−1. Let the inverse operator

ϖ−1m (⋅) ∶ {0,1}m → j, or the binary to base-10 conversion. Let digit i of ϖm(⋅) represent the

digit for 2i−1.

For example,ϖ3(4) = (0,0,1),ϖ5(4) = (0,0,1,0,0), andϖ3((0,0,1))−1 =ϖ5((0,0,1,0,0))−1 =

4. In order to see how S is ordered, suppose that Nz = 3 so S ≡ {0,1}3. Then the third and

fourth elements of the ordered set of principal strata are (0,1,0) and (1,1,0) respectively.
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With this ordering defined, let the matrix P x
Nz
(A ∣ SP0) in RNa×2Nz encode the distri-

butions Ai ∣ SP0
i ,Xi with (k, j)th element PNz(Ai = k ∣ SP0

i = ϖNz(j − 1),Xi = x). Let the

matrix P x
Nz
(SP0 ∣ R) in R2Nz×Nr encode the distribution SP0

i ∣ Ri,Xi with (k, j)th element

P x
Nz
(SP0

i =ϖNz(k − 1) ∣ Ri = j,Xi = x).

Finally, let matrix PNz(S̃ ∣ Z,SP0) ∈ R2Nz×2Nz with (k, j)th element

sn
ϖNz (j−1)k
S (1 − spS)1−ϖNz (j−1)k1 (k ≤ Nz) + (1 − snS)ϖNz (j−1)k−Nz sp

1−ϖNz (j−1)k−Nz

S 1 (k > Nz) .

Let P x
Nz
(SP0 ∣ R = r) be the rth column of matrix P x

Nz
(SP0 ∣ R). Then Lr can be

represented in matrix form as

Lr = PNz(S̃ ∣ Z,SP0)diag(P x
Nz
(SP0 ∣ R = r))P x

Nz
(A ∣ SP0)T

This structure again allows us to define L as the triple product of these three matrices,

each of which have columns that correspond to principal strata:

L = [PNz(S̃ ∣ Z,SP0), P x
Nz
(A ∣ SP0), P x

Nz
(SP0 ∣ R)T ].

The conditions for the identifiability of the model parameters are outlined below:

Theorem 3.3. Let Nz ≥ 2. Suppose Assumptions 2.3 to 2.1,Assumption 2.5, Assump-

tion 3.1, and Assumption 3.2 hold. If both snS, spS lie in [0,1/2) or both lie in (1/2,1],

P x
Nz
(A ∣ SP0) is at least Kruskal rank 2Nz − 1 and P x

Nz
(SP0 ∣ R) is rank 2Nz for all x then

the counterfactual distributions P (SP0
i = u ∣ Ri = r,Xi = x), P (Ai = k ∣ SP0

i = u,Xi = x) are

identifiable as are the quantities snS, spS, spY ,VE
u
I,jk(k), and VEu

I,jk. Furthermore, if snY

is unknown (known), distributions P (Yi(zj) = 1 ∣ SP0
i = u,Ai = k,Xi = x) are identifiable up

to an unknown (known) common constant, rY = snY + spY − 1.

Theorem 3.3 allows for a more realistic model of infection measurement than Hudgens

& Halloran (2006) and does not require any restrictions on the space of principal strata.
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The primary benefit of an unrestricted principal strata distribution is that we can jointly

infer vaccine efficacy against infection and vaccine efficacy against a post-infection outcome.

This will aid in designing comprehensive randomized trials for vaccine efficacy.

The proof of Theorem 3.3, shown in Section E is related to the methods in Jiang et al.

(2016) and Ding et al. (2011). Ding et al. (2011) addresses problems of identifiability

in survivor average treatment effects, which is mathematically analogous to vaccine effi-

cacy for post-infection outcomes, by measuring covariates that are related to the principal

strata. Jiang et al. (2016) identifies principal causal effects in binary surrogate endpoint

evaluations. Despite not being mathematically identical to vaccine efficacy, binary sur-

rogacy endpoint evaluation is ultimately a problem in identification of principal causal

effects. Most importantly, the proof does not encode any restrictions on the distribution

of secondary outcomes, otherwise known in our case as the post-infection outcomes. This

makes the result applicable to categorical or continuous post-infection outcomes, and, more

broadly, to principal stratification problems outside the scope of vaccine efficacy.

The identifiability results in Theorem 3.3 suggest the following so-called transparent

parameterization1: (βu,x
j,k , spY , snY )→ (p̃u,xj,k = (snY + spY −1)βu,x

j,k + (1− spY ), spY , snY ) . The

quantities p̃u,xj,k = P (Ỹi = 1 ∣ Zi = zj, SP0
i = u,Ai = k) and spY are identified by the data, while

snY is not. This yields the following asymptotic identification regions for snY and βu,x
j,k :

snY ∈ (max
x,u,j,k

(p̃u,xj,k ),1) , βu,x
j,k ∈ (

p̃u,xj,k − (1 − spY )
spY

,
p̃u,xj,k − (1 − spY )

maxx,u,j,k(p̃u,xj,k ) + spY − 1
) (9)

This may be useful for policymakers interested in absolute risk of post-infection outcomes

to forecast the burden on healthcare centers under different vaccination policies.

We will present a final corollary that will be useful in our applied examples:

1See (Gustafson 2015) for more details on inference in partially identified Bayesian models
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Corollary 3.4. Suppose in addition to Assumptions 2.3 to 2.1,Assumption 2.5, Assump-

tion 3.1, and Assumption 3.2, researchers do not directly observe Ai, but instead observe

a misclassified version of Ai, Ãi, such that the following nondifferential error assumption

holds: Ãi ⊥⊥ S̃i, Ỹi, Yi(zj, S(zj)),Ri, Zi, S
P0
i ∣ Ai,Xi. If both snS, spS lie in [0,1/2) or both lie

in (1/2,1], P x
Nz
(Ã ∣ SP0) is at least Kruskal rank 2Nz −1 and P x

Nz
(SP0 ∣ R) is rank 2Nz for all

x then the counterfactual distributions P (SP0
i = u ∣ Ri = r,Xi = x), P (Ãi = k ∣ SP0

i = u,Xi =

x) are identifiable as are the quantities snS, spS, spY , and VEu
I,jk. Furthermore, if snY is

unknown (known), distributions P (Yi(zj) = 1 ∣ SP0
i = u, Ãi = k,Xi = x) are identifiable up to

an unknown (known) common constant, rY = snY + spY − 1.

The proof, shown in Section E, follows directly from the proof of Theorem 3.3 and the

nondifferential misclassification error assumption for A.

While misclassified Ã precludes learning heterogeneous treatment effects, marginalizing

over the identifiable distribution Ãi ∣ SP0 ,Xi will yield the average post-infection vaccine

efficacy.

3.2 Models, priors and sensitivity analyses

Under the assumptions laid out in Section 3 the observational model is a multinomial

random variable for each study site and treatment group.

Let ñsyk(j, r, x) be∑n
i=1 1 (S̃i = s)1 (Ỹi = y)1 (Zi = zj)1 (Ri = r)1 (Ai = k)1 (Xi = x), and

let the error-free partially-observed causal model probabilities psyk∣jrx = P (Si = s, Yi = y,Ai =

k ∣ Zi = zj,Ri = r,Xi = x) be defined as:

p1yk∣jrx = ∑u∣u∈S,uj=1 a
u,x
k θr,xu (βu,x

j,k )y(1 − β
u,x
j,k )1−y, p0∗k∣jr = ∑u∣u∈S,uj=0 a

u,x
k θr,xu , (10)

where we note that p01k∣jrx = 0 for all k, j, r. Then we define the observable joint probabilities
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qsyk∣jrx = P (S̃i = s, Ỹi = y,Ai = k ∣ Zi = zj,Ri = r,Xi = x) as

qsyk∣jrx = sns
S(1 − snS)1−ssny

Y (1 − snY )1−yp11kjrx + sns
S(1 − snS)1−ssp1−y

Y (1 − spY )yp10kjrx

+ sp1−s
S (1 − spS)ssp1−y

Y (1 − spY )yp0∗kjrx,

This allows us to define the observational model as:

(ñ001(j, r, x), ñ011(j, r, x), ñ101(j, r, x), ñ111(j, r, x), . . . , ñ00Na(j, r, x), ñ01Na(j, r, x), ñ10Na(j, r, x), ñ11Na(j, r, x)) ∼

Multinomial(n(j, r, x) ∣ q001∣jrx, q011∣jrx, q101∣jrx, q111∣jrx, . . . , q00Na ∣jrx, q01Na ∣jrx, q10Na ∣jrx, q11Na ∣jrx),

j ∈ {1, . . . ,Nz}, r ∈ {1, . . . ,Nr}, x ∈ {1, . . . ,Nx}

(11)

The post-infection severe-illness models can be formulated as saturated logistic regres-

sions:

log
P (Yi(zj) = 1 ∣ SP0

i = u,Ai = k,Xi = x)
P (Yi(zj) = 0 ∣ SP0

i = u,Ai = k,Xi = x)
= αu,x

j + δ
u,x
j,k , β

u,x
j,k =

eα
u,x
j +δu,x

j,k

1 + eα
u,x
j +δu,x

j,k

,

δu,xj,1 = 0∀ j, u, x.

We may also implement a James-Stein-type estimator that asymptotically reduces to the

saturated logistic regression:

log
P (Yi(zj) = 1 ∣ SP0

i = u,Ai = k,Xi = x)
P (Yi(zj) = 0 ∣ SP0

i = u,Ai = k,Xi = x)
= αu

j + ϵu,xj,k , ϵ
u,x
j,k ∼ N(0, τ 2ϵ )∀ j, u, x, k.

The model can accommodate deviations from Assumption 2.6 through an additive term

εu,xr capturing heterogeneity between study sites:

log
P (Yi(zj) = 1 ∣ SP0

i = u,Ai = k,Ri = r,Xi = x)
P (Yi(zj) = 0 ∣ SP0

i = u,Ai = k,Ri = r,Xi = x)
= αu,x

j + δ
u,x
j,k + εu,xr ,

εu,xr ∼ Normal(0, (τuε )2).

We can fix τu,xγ to several values for sensitivity analysis, as developed in Jiang et al. (2016).

We may write the probability models for SP0
i ∣ Ri,Xi and Ai ∣ SP0

i ,Xi as two saturated

32



multinomial regressions, given Assumption 2.5 that Ai ⊥⊥ Ri, Zi ∣ SP0
i ,Xi.

log
P (SP0

i = u ∣ Ri = r,Xi = x)
P (SP0

i = u0 ∣ Ri = r,Xi = x)
= µr

u + ηxu + ηr,xu

log
P (Ai = k ∣ SP0

i = u,Xi = x)
P (Ai = k0 ∣ SP0

i = u,Xi = x)
= νu

k + γx
k + γu,x

k ,

where

θr,xu = eµ
r
u+η

x
u+η

r,x
u

∑w∈S eµ
r
w+ηxu+η

r,x
u

, µr
u0
= 0∀ r, au,xk = e

νuk +γ
x
k+γ

u,x
k

∑
Na
m=1 e

νum+γxk+γ
u,x
k

, νu
k0
= 0∀u.

Note that ηxu0
, γx

k0
, ηr,xu0 , γ

x
k0
, γu,x

k0
are all zero for all x. Furthermore, for given reference

categories x0, u0, r0, η
x0
u , γx0

k are zero for all u, k, while ηr0,xu is zero for all x, ηr,x0
u is zero for

all r, γu,x0

k is zero for all u and γu0,x
k is zero for all x. This leads to a tidy representation of

the log-odds of belonging to stratum u vs. u0 conditional on Ai = k,Ri = r,Xi = x:

log
P (SP0

i = u ∣ Ai = k,Ri = r,Xi = x)
P (SP0

i = u0 ∣ Ai = k,Ri = r,Xi = x)
= µr

u + νu
k − νu0

k + γ
u,x
k − γ

u0,x
k + ηxu + ηr,xu .

If we suspect deviations from Assumption 2.5, we can add an interaction between Ai

and Ri in the multinomial regression model for Ai:

log
P (Ai = k ∣ Ri = r, SP0

i = u,Xi = x)
P (Ai = k0 ∣ Ri = r, SP0

i = u,Xi = x)
= νu

k +γx
k +γu,x

k + ϵrk, ϵrk ∼ Normal(0, (τ kϵ )2)∀r. (12)

4 Design and analysis of vaccine efficacy studies

There are several real-world applications for Theorem 3.3 in vaccine efficacy studies. The

first is for quantifying vaccine efficacy against post-infection outcomes like severe illness,

medically-attended illness or death, which is the primary motivation for the methods we

have developed here. A second is to quantify the impact on vaccination on secondary

transmission to household contacts. In both of these hypothetical trials, we imagine that

participants are prospectively monitored for infection as well as the post-infection outcome
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of interest. The infection monitoring might involve regular diagnostic testing or analysis

of blood specimens for signs of infection.

A guiding philosophy we follow below is in using Bayesian models to design clinical

trials with good Frequentist properties, as is discussed in Berry (2011). Thus, we chose our

rejection region for our test statistic so as to limit our Type 1 error to no more than 0.05.

4.1 Vaccine efficacy against severe illness trial design

To show how our model can be used to design a vaccine efficacy study, we consider de-

termining the sample size for two hypothetical clinical trials: one three-arm trial inspired

by Monto et al. (2009), and a two-arm trial inspired by Polack et al. (2020). Monto et al.

(2009) investigated vaccine efficacy against symptomatic influenza infection in a three-arm,

double-blind placebo-controlled randomized trial. Polack et al. (2020) presented the results

of the COVID-19 Pfizer vaccination trial, which measured vaccine efficacy against symp-

tomatic infection using a two-arm double-blind placebo-controlled randomized trial. All

trials are designed so as to jointly test the efficacy against infection and the efficacy against

severe symptoms for the always-infected group.

In order to design our hypothetical trials, we simulate 200 datasets under the alternative

hypothesis for each sample size and measure the proportion of datasets in which we reject

the null hypothesis. For both trials, we will target a power of 0.8 against an alternative

hypothesis that the vaccine efficacy against symptoms is equal to 0.6 for the always-infected

stratum (i.e. SP0
i = (1,1,1) and SP0

i = (1,1)). We reject the null when the posterior

probability is 0.85 or larger that vaccine efficacy against severe illness is above 0.1 and that

the vaccine efficacy against infection is greater than 0.3. We can write the rejection region

for Data = {(S̃i, Ỹi, Zi,Ri,Ai,Xi), 1 ≤ i ≤ n} as {Data ∶ P (VE(1,1,1)I,31 > 0.1,VES,31 > 0.3 ∣
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Data) ≥ c} for the three-arm trial and {Data ∶ P (VE(1,1)I,21 > 0.1,VES,21 > 0.3 ∣ Data) ≥ k}

for the two-arm trial. More details on the choice of k is given in the next two subsections.

Broadly, our decision criterion is akin to that used in Polack et al. (2020), namely that the

posterior probability is greater than 0.986 that vaccine efficacy against confirmed COVID-

19 is greater than 0.3. For example, in the two-arm scenario k = 0.85 adequately controls

the Type 1 error for a null hypothesis of no vaccine efficacy against severe illness.

We use the model defined in Equation (11); the computational details are discussed in

Section H. Given the results of Theorem 3.3, we can determine the number of study sites

and the number of levels for Ai that need to be observed in order to point identify the

causal estimand of interest. For the three-arm trial, we need at least 8 study sites and a

covariate with at least 7 levels, while for the two-arm trial we need only 4 study sites and

a covariate with at least 3 levels. In the two-arm study we simulated data from 8 sites,

while in the three-arm trial we simulated data from 16 sites.

4.1.1 Two-arm trial

In the two arm trial, we sample the study-site-specific principal strata proportions from a

Dirichlet distribution. The distribution’s mean corresponds to the vector:

(P (SP0
i = (0,0)), P (SP0

i = (0,1)), P (SP0
i = (1,0)), P (SP0

i = (1,1))),

where SP0
i = (Si(1) = i, Si(0) = j). The mean is set to (0.78,0.1,0.02,0.1), while the

variance for each category is P (SP0
i = (i, j))(1 − P (SP0

i = (i, j)))/101. These parameter

settings result in a cumulative incidence of 16%.

We fitted three models, which are described in detail in the appendix. Both included

terms to account for possible deviations from assumption Assumption 2.5, and both employ

a hierarchical model for the probability of severe disease conditional on principal stratum
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and covariates. One model allows for an unrestricted set of principal strata, while the

other two assume monotonicity, namely that P (SP0
i = (1,0)) = 0. Of these two models

that assume monotonicity, one assumes severe disease and infection are observed without

error, while the other employs a measurement error model identical to the model proposed

in this paper. In the results below, the unrestricted model is full, while the model that

incorrectly assumes monotonicity and assumes perfect measurements is mono-wo-meas-

error. The model that assumes monotonicity but allows for measurement error is called

mono-w-meas-error. Given monotonicity assumption, neither monotonic model models the

distribution for Ai; they do, however, condition on Ai when learning the distribution of the

post-infection outcome. We measured coverage of the 95% posterior credible intervals, bias

and mean squared error of the posterior median of the target estimand, namely vaccine

efficacy against severe illness in the always-infected stratum SP0
i = (1,1), and vaccine effi-

cacy against infection. The data were simulated under two alternative hypotheses and two

null hypotheses. VE against severe illness was ≈ 0.6 under one alternative hypothesis, and

the alternative hypothesis had a VE against severe illness of ≈ −0.6. Alternatively, under

both null hypotheses VE against severe disease is equal to zero, while one has a VE against

infection of ≈ 0.5, and the other has a VE against infection ≈ 0.06. Within these hypotheses

we further stratified the simulations by two conditions: one in which Assumption 2.5 held

and one in which Assumption 2.5 was violated.

Bias and MSE under both alternative hypotheses are presented in Figures 1 to 2. The

figures show that under most scenarios, the full model has lower bias and MSE compared

to the other models, though there are exceptions. The notable exceptions are at sample

sizes of 20,000, and 40,000 under the null hypotheses. In these cases, monotonic models

have smaller MSEs. This is due to the fact that the models which assume monotonicity
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have far fewer parameters than the joint model, and while it may be a bit biased, this

increased bias is small compared to the decrease in variance.

The coverage plots in Figure 3 show that the posterior credible intervals generated by

the incorrect models have coverage far below the nominal rates under both alternative

hypotheses, but the coverage is at or above the nominal rates under both null hypotheses.

The full model achieves and sometimes exceeds the nominal coverage in all scenarios.

Because it is a stated goal of the model to jointly infer VES and VEI , the coverage plots

show that it is at a minimum necessary to use a model that allows an unrestricted causal

model to achieve nominal coverage.

The power calculations are presented in Table 1, which shows power as a function of

the sample size and the various hypotheses. Despite the increased MSE under the null

hypothesis, the full model does not have significantly inflated Type I errors compared to

the mono models. The full model displays higher power uniformly across scenarios and

sample sizes.
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Figure 1: Boxplots collecting bias across simulated datasets for posterior median VEI and VEI(3). Each boxplot bar

summarizes the bias of an estimator across 200 datasets under a single sample size and hypothesis combination. The blue bar

indicates bias under the full model, while the white bar indicates bias under the model employing a monotonicity assumption.

Rows of the graph correspond to different hypotheses, while the columns correspond to whether or not Assumption 2.5 holds.
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Figure 2: Boxplots collecting mean squared error across simulated datasets for posterior median VEI and VEI(3). Each

boxplot bar summarizes the bias of an estimator across 200 datasets under a single sample size and hypothesis combination.

The blue bar indicates bias under the full model, while the white bar indicates bias under the model employing a mono-

tonicity assumption. Rows of the graph correspond to different hypotheses, while the columns correspond to whether or not

Assumption 2.5 holds.
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Figure 3: Posterior credible interval coverage across simulated datasets for VEI and VES (95% intervals). Each point and

error bar summarizes the coverage of the credible 200 datasets under a single sample size and hypothesis combination. The

blue square points indicate the full model coverage, while the white points indicate the coverage under the model employing

a monotonicity assumption. Rows of the graph correspond to different hypotheses, while the columns correspond to whether

or not Assumption 2.5 holds.
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Table 1: Power and Type I error rates for sample sizes of 4,000 through 40,000. Hypothesis indicates whether the alternative

or the null hypothesis was used to generate the datasets, the column Ai ⊥⊥ Ri ∣ S
P0
i indicates whether Assumption 2.5 holds,

and the Model column indicates whether the full model or the models that incorrectly assume monotonicity were fitted. The

k column indicates the cutoff value used to control Type I error; these values are specific to each model and are set so as to

control the Type I error under the null across all sample sizes and Ai ⊥⊥ Ri ∣ S
P0
i scenarios. Values for VEI = 0.6 indicate

power, while VEI = 0 indicate Type I error.

Hypothesis Ai ⊥⊥ Ri ∣ SP0? Model k 4,000 20,000 40,000

VEI = 0.6
Ai ⊥⊥ Ri ∣ SP0

mono-wo-meas-error 0.925 0.23 0.77 0.90
mono-w-meas-error 0.75 0.34 0.80 0.95
full 0.85 0.53 0.92 1.00

Ai /⊥⊥ Ri ∣ SP0

mono-wo-meas-error 0.925 0.23 0.78 0.92
mono-w-meas-error 0.75 0.35 0.81 0.96
full 0.85 0.59 0.95 1.00

VEI = 0
Ai ⊥⊥ Ri ∣ SP0

mono-wo-meas-error 0.925 0.03 0.01 0.01
mono-w-meas-error 0.75 0.03 0.02 0.04
full 0.85 0.03 0.04 0.01

Ai /⊥⊥ Ri ∣ SP0

mono-wo-meas-error 0.925 0.05 0.01 0.01
mono-w-meas-error 0.75 0.04 0.03 0.03
full 0.85 0.03 0.04 0.01

While these results show that one needs fairly large sample sizes to achieve 80% power

for the estimands of interest in both scenarios, this is expected because the always-infected

principal strata, (1,1), are only 10% of their respective populations in our simulation

studies. Despite the full model having more parameters than either the mono-w-meas-

error or mono-wo-meas-error, it generates the most powerful test in all scenarios while

adequately controlling the type I error. In order to achieve Type I error control, the mono-

wo-meas-error model requires a much smaller rejection region, or, equivalently, a larger

value of k compared to the other two models. This reduces its power, and results in the

mono-wo-meas-error having the smallest power among the models.

This highlights the extent to which power calculations, and bias and MSE for our models

are dependent on principal strata proportions. Even though the proportion of individuals

who are harmed by the vaccine is only 2%, the effect on models that assume monotonicity

is quite drastic in terms of bias, MSE, and especially coverage.
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Furthermore, though the sample sizes are large, randomized vaccine trials of similar

magnitude have been run. For example, the trial presented in Polack et al. (2020) included

approximately 43,500 participants. This highlights the fact that our model can be used to

infer post-infection outcome vaccine efficacy from large real-world studies.

4.1.2 Three-arm trial

In the three arm trial, we sample the study-site-specific principal strata proportions from

a Dirichlet distribution. The distribution’s mean corresponds to the vector:

(P (SP0
i = (0,0,0)), P (SP0

i = (1,0,0)), P (SP0
i = (0,1,0)), P (SP0

i = (1,1,0)),

P (SP0
i = (0,0,1)), P (SP0

i = (1,0,1)), P (SP0
i = (0,1,1)), P (SP0

i = (1,1,1))

where SP0
i = (Si(0) = i, Si(1) = j, Si(2) = k). The mean is set to (0.7,0.13,0.01,0.01,0.01,0.01,0.01,0.12),

while the variance for each category is P (SP0
i = (i, j, k))(1−P (SP0

i = (i, j, k)))/101, as above.

These parameter settings result in a population-average cumulative incidence of 19%.

We simulated data under two scenarios of varying study population size of 4,000, 40,000,

and 80,000 participants. In all scenarios, VES,21 = 0.45,VES,21 = 0.41 and VE
(1,1,1)
I,21 = 0. In

one scenario, VE
(1,1,1)
I,21 = 0.52, while VE(1,1,1)I,21 = 0 in the null scenario. The data is generated

so that Assumption 2.5 holds.

We fitted the same three models we fitted above, but the monotonicity assumption

is more severe for the three-arm trial compared to the two-arm trial because only four

parameters can be estimated from the observed data. The monotonic models assume that

P (SP0
i = (0,1,0)) = P (SP0

i = (0,0,1)) = P (SP0
i = (1,0,1)) = P (SP0

i = (0,1,1)) = 0,

thus misclassifying about 4% of the population.

In order to compare the models’ performance, we measured VE
(1,1,1)
I,21 and VE

(1,1,1)
I,31 , as
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well as conditional VE VE
(1,1,1)
I,21 (k) and VE

(1,1,1)
I,31 (k) for k = 5. We also compared inferences

for the VE against infection estimands, VES,21 and VES,31 respectively.

Figure 4 shows that the bias of the full model was the smallest in nearly every scenario

for the chosen parameters. Meanwhile, the Figure 5 results are more mixed; the figure

shows that the MSE is smallest for the full model when sample size exceeds 4,000 for the

VES parameters, but that the MSE for the VEI and conditional causal estimand is larger

when the causal null hypothesis holds. In Figure 6 we see that the full model attains

the nominal coverage for the VEI parameters, while the monotonic models fail to achieve

nominal coverage for these parameters. All models fail to achieve the nominal coverage for

the VES parameters, but the full model’s coverage improves as the sample size increases.

Table 2: Power and Type I error rates for sample sizes of 4,000 through 80,000 for the three-arm treatment simulation

study. Hypothesis indicates whether the alternative or the null hypothesis was used to generate the datasets, the column

Ai ⊥⊥ Ri ∣ S
P0
i indicates whether Assumption 2.5 holds, and the Model column indicates whether the full model or the two

models that incorrectly assume monotonicity were fitted. The k column shows the cutoff value that determines the rejection

region; the value is chosen so as to control Type I error across all sample sizes for each model. Values for VE
(1,1,1)
I,31 = 0.52

indicate power, while VE
(1,1,1)
I,31 = 0 indicate Type I error. By design, all methods will have Type I error less than or equal to

5%.

Hypothesis Ai ⊥⊥ Ri ∣ SP0? Model k 4,000 40,000 80,000

VE
(1,1,1)
I,31 = 0.52 Ai ⊥⊥ Ri ∣ SP0

mono-wo-meas-error 0.99 0.02 0.68 0.94
mono-w-meas-error 0.94 0.02 0.75 0.97
full 0.93 0.00 0.83 0.98

VE
(1,1,1)
I,31 = 0 Ai ⊥⊥ Ri ∣ SP0

mono-wo-meas-error 0.99 0.00 0.03 0.03
mono-w-meas-error 0.94 0.00 0.04 0.03
full 0.93 0.00 0.04 0.03

Table 2 shows the pitfalls of the smaller MSE values from the mono-wo-meas-error

model, namely that in order to control the Type I error we need a much smaller rejection

region. This leads to lower power compared to the other two models. In keeping with the

results in the two-arm trial, the full model has the highest power among all the models,

with the exception of the 4,000 participant scenario. The results show that one could run a
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Figure 4: Boxplots collecting bias across simulated datasets for posterior median VE
(1,1,1)
I,21 and VE

(1,1,1)
I,31 in the top row,

VE
(1,1,1)
I,21 (k) and VE

(1,1,1)
I,31 (k) in the middle row, and VES,21 and VES,31 in the final row. Each boxplot bar summarizes

the bias of an estimator across 200 datasets under a single sample size and hypothesis combination. The blue bar indicates

bias under the full model, while the white bar indicates bias under the model employing a monotonicity assumption. The

columns correspond to whether the null hypothesis of VE
(1,1,1)
I,31 = 0 holds.
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Figure 5: Boxplots collecting mean squared error across simulated datasets for posterior median VE
(1,1,1)
I,21 and VE

(1,1,1)
I,31 in

the top row, VE
(1,1,1)
I,21 (k) and VE

(1,1,1)
I,31 (k) in the middle row, and VES,21 and VES,31 in the final row. Each boxplot bar

summarizes the bias of an estimator across 200 datasets under a single sample size and hypothesis combination. The blue bar

indicates bias under the full model, while the white bar indicates bias under the model employing a monotonicity assumption.

The columns correspond to whether the null hypothesis of VE
(1,1,1)
I,31 = 0 holds.
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Figure 6: Posterior credible interval coverage across simulated datasets for VE
(1,1,1)
I,21 and VE

(1,1,1)
I,31 (95% intervals) in the

top row, VE
(1,1,1)
I,21 (k) and VE

(1,1,1)
I,31 (k) in the middle row, and VES,21 and VES,31 in the final row (all 90% intervals).

Each point and error bar summarizes the coverage of the credible 200 datasets under a single sample size and hypothesis

combination. The blue square points indicate the full model coverage, while the white points indicate the coverage under the

model employing a monotonicity assumption. The columns correspond to whether the null hypothesis of VE
(1,1,1)
I,31 = 0 holds.
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trial with 40,000 to achieve 80% power. Recent vaccine trials show that trials of 40,000 are

feasible and successful, further demonstrating the applicability of our model to real-world

trials.

5 Discussion

Policymakers and public health experts can use vaccine efficacy for post-infection outcomes

to design more precise vaccination programs. Our method makes inferring these causal es-

timands feasible in real-world multi-arm trials where outcomes are measured with error

and vaccines cannot be assumed to have a nonnegative effect on infection for every in-

dividual. The power of our method is reflected in its flexibility to be applied to vaccine

trials with multiple treatments as well as various post-infection outcomes. Although we

focus on binary post-infection outcomes here, our method is readily extensible to ordinal

and continuous measures, such as immune response as measured by antibody titer. Ac-

cordingly, when paired with a parametric likelihood for continuous post-infection outcomes,

our method may be more statistically efficient than models identified by likelihood assump-

tions alone, like that of Zhang et al. (2009). Furthermore, our identifiability results are

nonparametric, though we use parametric Bayesian estimators in our examples. One can

use these methods to design and analyze clinical trials, as we show in Section 4.

5.1 Limitations and extensions

The model currently assumes that post-infection outcome specificity is constant across

study sites, but this may not reflect the reality of some vaccine trials. An extension to the

model is to allow misclassification rates that differ by values of covariates X, by treatment

assignment Z as well as by study site R. The identifiability results readily generalize to
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models including X and Z, but more work is required to understand how varying speci-

ficities by R impacts the identifiability results presented here. For instance, if a vaccine

changes how the virus populates the nasal cavity, we might expect that PCR tests from

nasopharyngeal swabs will be less sensitive in the vaccinated group. More work is needed

to further generalize the procedure to categorical intermediate outcomes, which would al-

low for more general vaccine efficacy against transmission study designs (VanderWeele &

Tchetgen Tchetgen 2011), as well as applications beyond vaccine efficacy to noncompliance

in multi-arm trials where the exclusion restriction could be violated (Cheng & Small 2006).

A Proofs and further details for simulation studies

We define our notation for principal stratification in vaccine efficacy (VE) in section B.

In section F, we give general properties of the Kruskal rank, and extensions to Kruskal

(1977) theorems that we derived. We apply these extensions in the context of principle

stratification for VE in section C. The proof of our main result, Theorem 3.3, is given in

section E. These proofs are based on results in Section F and Section C.

B Notation and definitions

In the following proofs, we have omitted the subscript i from random variables to simplify

our notation. We have also elided conditioning on Xi = x; the proofs shown in Section E are

understood to be conditional on Xi = x. Let z be the Nz-category discrete variable taking

values in the set {z1, . . . , zNz} representing treatment, and let Z be treatment assignment.

The principal stratum, SP0 is defined as (S(z1), . . . , S(zNz)), S(zj) ∈ {0,1}. Let S be the set

of principal strata, which is equal to {0,1}Nz when there are no monotonicity assumptions;
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let u ∈ S.

Let the set of treatments be {z1, . . . , zNz}, with z ∈ {z1, . . . , zNz}

Let A have Na levels and take values in the set {1, . . . ,Na}. Let P (A ∣ R) be the

Na × Nr matrix with (i, j)th element equal to P (A = i ∣ R = j) and let P (A = k ∣ R)

be the Nr × Nr diagonal matrix with (i, i)th diagonal element P (A = k ∣ R = i). Let

P (Ã = k ∣ R) be defined similarly. Let PNz(A ∣ SP0) be the Na × 2Nz matrix with (i, j)th

element equal to P (A = i ∣ SP0 = ϖNz(j − 1)), and let PNz(SP0 ∣ R) be the 2Nz ×Nr matrix

with (i, j)th element equal to P (SP0 = ϖNz(i − 1) ∣ R = j). Let PNz(A = k ∣ SP0) be

the 2Nz × 2Nz diagonal matrix with (i, i)th element P (A = k ∣ SP0 = ϖNz(i − 1)) and let

PNz(Ã = k ∣ SP0) be defined similarly. Let P (y ∣ R,Z = z) be the 1×R matrix with element

(1, j)th equal to P (y ∣ R = j,Z = z), and similarly let PNz(y ∣ SP0 , Z = z) be the 1 × 2Nz

matrix with element (1, j)th equal to P (y ∣ SP0 = ϖNz(j − 1), Z = z). Let P (y ∣ R,Z =

z,A = k) be the 1 × R matrix with (1, j)th element equal to P (y ∣ R = j,Z = z,A = k),

and similarly let PNz(y ∣ SP0 , Z = z,A = k) be the 1 × 2Nz matrix with element (1, j)th

equal to P (y ∣ SP0 = ϖNz(j − 1), Z = z,A = k). Let the matrix PNz(S ∣ Z,SP0) be in

R2Nz×2Nz where column denotes principal stratum SP0 = ϖNz(j − 1) and row represents

a combination (s, z) ∈ {(1,1), (1,2), . . . , (1,Nz), (0,1), . . . , (0,Nz)}, with (i, j)th element

denoted PNz(S ∣ Z,SP0)ij defined as

PNz(S ∣ Z,SP0)ij =ϖNz(j − 1)i1 (i ≤ Nz) + (1 −ϖNz(j − 1)i−Nz)1 (i > Nz) ,

and let PNz(S̃ ∣ Z,SP0) be in R2Nz×2Nz with (i, j)th element denoted PNz(S̃ ∣ Z,SP0)ij

defined:

PNz(S̃ ∣ Z,SP0)ij = snϖNz (j−1)i
S (1 − spS)1−ϖNz (j−1)i1 (i ≤ Nz)

+ (1 − snS)ϖNz (j−1)i−Nz sp
1−ϖNz (j−1)i−Nz

S 1 (i > Nz) .
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Let B+ be the Moore-Penrose inverse of the matrix B, 1m be the m-vector of 1s, 0m be the

m-vector of 0s, and Im be the m ×m dimensional identity matrix.

C Kruskal rank properties related to VE

In this section, we show that (a) the Kruskal rank of the matrix PNz(S̃ ∣ Z,SP0) is 3 for

Nz ≥ 2 when snS + spS ≠ 1 and (b) the column domains of PNz(S̃ ∣ Z,SP0) are not invariant

to column permutation when snS, spS > 0.5 or snS, spS < 0.5 for Nz ≥ 2.

Lemma C.1 (Kruskal rank P2(S̃ ∣ Z,SP0) ). The Kruskal rank of

(0,0) (1,0) (0,1) (1,1)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 − spS snS 1 − spS snS (s = 1, z = 1)

1 − spS 1 − spS snS snS (s = 1, z = 2)

spS 1 − snS spS 1 − snS (s = 0, z = 1)

spS spS 1 − snS 1 − snS (s = 0, z = 2)

(13)

is 3 as long as snS + spS ≠ 1.

Proof. All subsets of 3 columns of the matrix P2(S̃ ∣ Z,SP0) are of the form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a c e

b d f

1 − a 1 − c 1 − e

1 − b 1 − d 1 − f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

These submatrices have a common maximal minor of

a(d − f) − c(b − f) + e(b − d).
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The quantities a, b, c, d, e, f are the elements of the 2 × 3 matrix

⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

a c e

b d f
(15)

in which (a, b)T , (c, d)T , (e, f)T are any 3 columns drawn without replacement from the

2 × 4 submatrix of Equation (13):

⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

1 − spS snS 1 − spS snS

1 − spS 1 − spS snS snS

. (16)

These minors are all equal to (up to a factor of −1):

(1 − snS − spS)2,

which can be seen after a brute-force calculation. The minors are nonzero for all snS, spS ∈

[0,1] such that snS + spS ≠ 1. Thus, by the determinantal rank definition, all 3 column

matrices are rank 3. In contrast, the determinant of P2(S̃ ∣ Z,SP0) is 0 for all values of

snS, spS. Thus by the definition of Kruskal rank in Definition 2.6, kP2(S̃∣Z,SP0) = 3.

Lemma C.2 (Kruskal rank PNz(S̃ ∣ Z,SP0), Nz ≥ 2 ). The Kruskal rank of P (S̃ ∣ Z,SP0)

for Nz ≥ 2 is 3 as long as snS + spS ≠ 1.

Proof. We proceed by induction. For Nz = 2, Lemma C.1 shows that the Kruskal rank is

3. Let Nz = n for n > 2. Recall that Pn(S̃ ∣ Z,SP0) is the 2n × 2n matrix with column j

⎡⎢⎢⎢⎢⎢⎢⎢⎣

sj

1n − sj

⎤⎥⎥⎥⎥⎥⎥⎥⎦

with the ith element of sj denoted sij and defined as:

sij = snϖn(j−1)i
S (1 − spS)1−ϖn(j−1)i .
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The induction hypothesis is that the Kruskal rank of Pn(S̃ ∣ Z,SP0) is 3. The columns of

Pn+1(S̃ ∣ Z,SP0) are of the form
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sj

1 − spS

1n − sj

spS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for j ∈ {1, . . . ,2n}, and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sj−2n

snS

1n − sj−2n

1 − snS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for j ∈ {2n + 1, . . . ,2n+1}. The 3-column submatrices of PNz(S̃ ∣ Z,SP0) made from column

j, ℓ,m indices fall into several classes. When j, ℓ,m ∈ {1, . . . ,2n}, j, ℓ,m ∈ {2n+1, . . . ,2n+1} or

j, ℓ ∈ {1, . . . ,2n},m ∈ {2n+1, . . . ,2n+1}∖{j+2n, ℓ+2n}, j ∈ {1, . . . ,2n},m, ℓ ∈ {2n+1, . . . ,2n+1}∖

{j + 2n} all matrices are rank 3 by the induction hypothesis. When j, ℓ ∈ {1, . . . ,2n} but

m ∈ {j + 2n, ℓ + 2n} the submatrix is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sj sℓ sm−2n

1 − spS 1 − spS snS

1n − sj 1n − sℓ 1n − sm−2n

spS spS 1 − snS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

WLOG, let m = j + 2n. This leads to the submatrix:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sj sℓ sj

1 − spS 1 − spS snS

1n − sj 1n − sℓ 1n − sj

spS spS 1 − snS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The rank of this submatrix is

rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sj sℓ sj

1 − spS 1 − spS snS

1n − sj 1n − sℓ 1n − sj

spS spS 1 − snS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sj sℓ sj

1 − spS 1 − spS snS

1n − sj 1n − sℓ 1n − sj

1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sj sℓ sj

1n − sj 1n − sℓ 1n − sj

1 − spS 1 − spS snS

0 0 1 − snS
1−spS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sj sℓ

1n − sj 1n − sℓ

1 − spS 1 − spS

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ rank(1 − snS

1 − spS

)

= 3.

The inequality follows from Lemma G.1. Other scenarios follow similarly.

Lemma C.3 (Domain restriction lemma). If snS, spS ∈ [0,0.5) or snS, spS ∈ (0.5,1], the

matrix PNz(S̃ ∣ Z,SP0) ∈ R2Nz×2Nz has column domains that are not invariant to column

permutation.

Proof. We prove Lemma C.3 by induction on Nz. The base case is Nz = 2. Let P be a 4×4
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permutation matrix and let P2(S̃ ∣ Z,SP0) be

(0,0) (1,0) (0,1) (1,1)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 − spS snS 1 − spS snS (s = 1, z = 1)

1 − spS 1 − spS snS snS (s = 1, z = 2)

spS 1 − snS spS 1 − snS (s = 0, z = 1)

spS spS 1 − snS 1 − snS (s = 0, z = 2)

(17)

Recall from the definition in Section B that the column indices {1,2,3,4} of P2(S̃ ∣ Z,SP0)

map to the following principal strata SP0 : ϖ2(0),ϖ2(1),ϖ2(2),ϖ2(3). In other words,

column index j is mapped to SP0 via the relation ϖ2(j − 1). We consider permutation

matrix P without loss of generality, and other cases are similarly shown,

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Let C = [0,1], and let A be one of two half intervals of [0,1]: [0,0.5) or (0.5,1]. Let

B = C ∖ A. Note that P2(S̃ ∣ Z,SP0) maps C × C to a matrix with elements in C. Let

1− spS ∈ A and let snS ∈ B and suppose that the column domains for P2(S̃ ∣ Z,SP0) are not

invariant after permutation by matrix P . Then we have the following domain for the map

given by P2(S̃ ∣ Z,SP0):

P2(S̃ ∣ Z,SP0) ∣A×B∶ A × B →

(0,0) (1,0) (0,1) (1,1)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A A A A

A A A A

B B B B

B B B B)
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However, we have,

P̄2(S̃ ∣ Z,SP0) ∣A×B = P2(S̃ ∣ Z,SP0) ∣A×B P (18)

=

(0,0) (1,0) (0,1) (1,1)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 − spS snS 1 − spS snS

1 − spS 1 − spS snS snS

spS 1 − snS spS 1 − snS

spS spS 1 − snS 1 − snS

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

=

(0,0) (1,0) (0,1) (1,1)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

snS 1 − spS snS 1 − spS

snS 1 − spS 1 − spS snS

1 − snS spS 1 − snS spS

1 − snS spS spS 1 − snS

. (20)

But we see that the column domains are invariant after column permutation:

P̄2(S̃ ∣ Z,SP0) ∣A×B∶ A × B →

(0,0) (1,0) (0,1) (1,1)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A A A A (s = 1, z = 1)

A A A A (s = 1, z = 2)

B B B B (s = 0, z = 1)

B B B B (s = 0, z = 2)

In order for the columns P̄2(S̃ ∣ Z,SP0) ∣A×B to be on the same domain as P2(S̃ ∣

Z,SP0) ∣A×B, a necessary and sufficient condition is that snS and 1 − spS are on the same

domain. In other words, {snS ∈ A, spS ∈ B} or {snS ∈ B, spS ∈ A}.

Thus P̄2(S̃ ∣ Z,SP0) ∣A×B maps (snS, spS) to the same space that P2(S̃ ∣ Z,SP0) ∣A×B.

We contradict our statement that the columns are not invariant to permutation.
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The case for Nz > 2. Let Nz = n > 2 and let the column domains of Pn(S̃ ∣ Z,SP0) be

not invariant to permutation. Furthermore suppose that snS, spS ∈ A or snS, spS ∈ B. Then

matrix Pn+1(S̃ ∣ Z,SP0) has columns

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sj

1 − spS

1n − sj

spS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for j ∈ {1, . . . ,2n} and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sj−2n

snS

1n − sj−2n

1 − snS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for j ∈ {2n + 1, . . . ,2n+1}. Permuting any two columns j, k ∈ {1, . . . ,2n} or j, k ∈ {2n +

1, . . . ,2n+1} yields different column domains given the induction hypothesis. If j ∈ {1, . . . ,2n}

and k = j + 2n, then the columns are

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sj sj

1 − spS snS

1n − sj 1n − sj

spS 1 − snS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Let the domain of sj be D, and let Dc = [0,1]n ∖D be the domain of 1n − sj. Then the

domains are ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D D

A B

Dc Dc

B A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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if spS, snS ∈ B and
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D D

B A

Dc Dc

A B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
if spS, snS ∈ A. These two columns are not invariant to permutation. Because no two

columns may be interchanged without a change in domain, right multiplying Pn+1(S̃ ∣

Z,SP0) by any 2n+1×2n+1 permutation matrix P ≠ In+1 to will yield a matrix with different

column domains than Pn+1(S̃ ∣ Z,SP0).

D Rank properties related to VE

In this section we show that when Nz ≥ 2 the rank of PNz(S̃ ∣ Z,SP0) = Nz + 1 when

snS + spS ≠ 1.

Lemma D.1 (Rank P2(S̃ ∣ Z,SP0) ). The rank of P2(S̃ ∣ Z,SP0), defined in Equation (13),

is 3 as long as snS + spS ≠ 1.

Proof. The determinant of P2(S̃ ∣ Z,SP0) is 0. The determinant of the 3-minor M4,4 is

(1 − snS − spS)2 which is nonzero as long as snS + spS ≠ 1.

Lemma D.2 (Rank PNz(S̃ ∣ Z,SP0), Nz ≥ 2 ). The rank of P (S̃ ∣ Z,SP0) for Nz ≥ 2 is

Nz + 1 as long as snS + spS ≠ 1.

Proof. We proceed by induction. For Nz = 2, Lemma D.1 shows that the rank is 3. Let

Nz = n for n > 2. Recall that Pn(S̃ ∣ Z,SP0) is the 2n × 2n matrix with column j

⎡⎢⎢⎢⎢⎢⎢⎢⎣

sj

1n − sj

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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with the ith element of sj denoted sij and defined as:

sij = snϖn(j−1)i
S (1 − spS)1−ϖn(j−1)i .

The induction hypothesis is that the rank of Pn(S̃ ∣ Z,SP0) is n + 1. The columns of

Pn+1(S̃ ∣ Z,SP0) are of the form
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sj

1 − spS

1n − sj

spS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for j ∈ {1, . . . ,2n}, and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sj−2n

snS

1n − sj−2n

1 − snS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for j ∈ {2n + 1, . . . ,2n+1}. After a row permutation we can express Pn+1(S̃ ∣ Z,SP0) as a

block matrix:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pn(S̃ ∣ Z,SP0) Pn(S̃ ∣ Z,SP0)

(1 − spS)1T
2n snS1T

2n

spS1
T
2n (1 − snS)1T

2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Recall that by construction the sum of the ith row with the (i + n)th row of Pn(S̃ ∣ Z,SP0)

is 1T
2n for i ≤ n. Then by Lemma G.2, rank (Pn+1(S ∣ Z,SP0)) is

rank (Pn+1(S ∣ Z,SP0)) = rank (Pn(S ∣ Z,SP0)) + rank
⎛
⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

snS1T
2n

(1 − snS)1T
2n

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(1 − spS)1T
2n

spS1
T
2n

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠

(21)

= n + 1 + 1 (22)
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given that snS + spS ≠ 1.

E Main results

Proof. Proof of Theorem 3.3

Define the three way array L with dimensions 2Nz ×Na ×Nr and (i, j, r)th element P (S̃ =

1 (i ≤ Nz) ,A = k ∣ Z = zi−Nz1(i>Nz),R = r). Recall that the definition of matrix PNz(S̃ ∣

Z,SP0) requires that column j be
⎡⎢⎢⎢⎢⎢⎢⎢⎣

sj

1Nz − sj

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where the ith element of sj is denoted as sij and is defined as:

sij = snϖNz (j−1)i
S (1 − spS)1−ϖNz (j−1)i

Let the matrices PNz(SP0 ∣ R)T , PNz(A ∣ SP0) be defined as in Section B. Then

P (S̃ = 1 (i ≤ Nz) ,A = k ∣ Z = zi−Nz1(i>Nz),R = r) =
2Nz

∑
j=1

PNz(S̃ ∣ Z,SP0)i,jPNz(SP0 ∣ R)Tr,jPNz(A ∣ SP0)k,j.

Given that snS + spS ≠ 1, as shown in Lemma C.2, kPNz (S̃∣Z,S
P0) = 3 and rank(PNz(S̃ ∣

Z,SP0)) = Nz + 1. Furthermore, by assumptions stated in Theorem 3.3, rank(PNz(SP0 ∣

R)T ) = 2Nz and PNz(SP0 ∣ R)T ∈ RNr×2Nz so by Definition 2.6, kPNz (S
P0 ∣R)T = 2Nz . Given

that kPNz (A∣S
P0) ≥ 2Nz − 1 as stated in Theorem 3.3, the conditions in Corollary F.3 hold:

min(3,2Nz) + 2Nz − 1 ≥ 2Nz + 2 (23)

min(3,2Nz − 1) + 2Nz ≥ 2Nz + 2 (24)

(25)
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and

rank(PNz(S ∣ Z,SP0)) + rank(PNz(SP0 ∣ R)) + rank(PNz(A ∣ SP0)) (26)

≥ Nz + 1 + 2Nz + 2Nz − 1 (27)

= Nz + 2Nz+1 (28)

by the fact that rank(PNz(A ∣ SP0)) ≥ k(PNz (A∣S
P0). Also

Nz + 2Nz+1 − 2(2Nz − 1) = Nz − 1 (29)

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min(Nz − 2, rank(PNz(A ∣ SP0)) − k(PNz (A∣S
P0))

min(Nz − 2,0)
. (30)

Given that PNz(A ∣ SP0) has columns that sum to 1, and PNz(SP0 ∣ R)T has rows that sum to

1, we can apply Corollary F.3 to the 3-way array L. Applying Corollary F.3 yields that the

triple-product decomposition [PNz(S̃ ∣ Z,SP0), PNz(A ∣ SP0), PNz(SP0 ∣ R)T ] is unique up to

a common column permutation. However, Theorem 3.3 states the assumption that snS, spS

lie in a common half-interval. By Lemma C.3, the only permutation matrix consistent

with the column domain of PNz(S̃ ∣ Z,SP0) is the identity matrix. We conclude that the

3-way decomposition of L, [PNz(S̃ ∣ Z,SP0), PNz(A ∣ SP0), PNz(SP0 ∣ R)T ], is unique. It

follows that two different decompositions [PNz(S̃ ∣ Z,SP0), PNz(A ∣ SP0), PNz(SP0 ∣ R)T ]

and [PNz(S̃ ∣ Z,SP0)′, PNz(A ∣ SP0)′, (PNz(SP0 ∣ R)T )′] yield different Ls. By the fact that

L is a complete characterization of the data distribution P (S̃ = s,A = k ∣ Z = zj,R = r) and

Definition 2.4 the parameter set [PNz(S̃ ∣ Z,SP0), PNz(A ∣ SP0), PNz(SP0 ∣ R)T ] is strictly

identifiable.

Define the matrix P (Ỹ ∣ Z,R,A = k) with dimensions Nz ×Nr with elements P (Ỹ = y ∣

R = r,Z = z,A = k)

P (Ỹ ∣ Z,R,A = k)i,r = P (Ỹ = 1 ∣ Z = zi,R = r,A = k).
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Let the matrix PNz(Ỹ ∣ Z,SP0 ,A = k) be in RNz×2Nz for all k ∈ {1, . . . ,Na} with elements

PNz(Ỹ ∣ Z,SP0 ,A = k)i,j =ϖNz(j − 1)irY P (Y = 1 ∣ Z = zi, SP0 =ϖNz(j − 1),A = k)

+ (1 − spY )
(31)

where rY = spY + snY − 1. Then

P (Ỹ = 1 ∣ Z = zi,A = k,R = r) =
2Nz

∑
j=1

PNz(Ỹ ∣ Z,SP0 ,A = k)i,jPNz(SP0 ∣ R)j,r

× PNz(A = k ∣ SP0)j,j/P (A = k ∣ R = r).

Recalling the definitions of diagonal matrices P (A = k ∣ R) and PNz(A = k ∣ SP0), the

expression can be rewritten as matrix multiplication:

P (Ỹ ∣ Z,R,A = k) = PNz(Ỹ ∣ Z,SP0 ,A = k)PNz(A = k ∣ SP0)PNz(SP0 ∣ R)P (A = k ∣ R)−1.

(32)

Given our assumption that PNz(SP0 ∣ R) is full row rank,PNz(SP0 ∣ R)PNz(SP0 ∣ R)+ = I2Nz .

We assume without loss of generality that P (A = k ∣ SP0 = u) > 0∀k, u, so PNz(A = k ∣ SP0)

is invertible, and that P (A = k ∣ R = r) > 0∀k, r so P (A = k ∣ R) is invertible.

P (Ỹ ∣ Z,R,A = k)P (A = k ∣ R)PNz(SP0 ∣ R)+PNz(A = k ∣ SP0)−1 = PNz(Ỹ ∣ Z,A = k,SP0)

(33)

If to the contrary that P (A = k ∣ SP0 = u) = 0 for some k and u, we adopt the convention

that P (Ỹ = y ∣ Z = z, SP0 = u,A = k) is undefined. We can then reduce the set of principal

strata included in the sum to include only those for which P (A = k ∣ SP0 = u) > 0. It follows

from the full-row-rank assumption on PNz(SP0 ∣ R) that the matrix formed from any subset

of rows of this matrix is still full row-rank. Given the modified matrices, Equation (33)

will hold with the reduced set of principal strata. We can use a similar technique when

P (A = k ∣ R = r) = 0 for some combination of k and r. This condition is empirically testable.
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It then follows the definition of PNz(Ỹ ∣ Z,SP0 ,A = k) in Equation (31) that spY is

identifiable, as are the parameters rY P (Y = 1 ∣ Z = zj, SP0 = ϖNz(j − 1),A = k) for all

zj, j ∈ {1, . . . ,2Nz} and k.

Let any allowable post-infection outcome vaccine efficacy estimand, necessarily where

uj ul = 1, be defined as

VEu
I,jl(k) = 1 −

E [Y (zj) ∣ SP0 = u,A = k]
E [Y (zl) ∣ SP0 = u,A = k] .

By Assumptions 2.1 to 2.2 P (Y = 1 ∣ Z = z, SP0 = u,A = k) = P (Y (z) = 1 ∣ SP0 = u,A = k)

for all z ∈ {z1, . . . , zNz} and E [Y (z) ∣ SP0 = u,A = k] = P (Y (z) = 1 ∣ SP0 = u,A = k). Note

that spY = 1 − PNz(Ỹ ∣ Z,SP0 ,A = k)1,1 by our definition of PNz(Ỹ ∣ Z,SP0 ,A = k) in

Equation (31). This is because the the first column of PNz(Ỹ ∣ Z,SP0 ,A = k) corresponds

to the principal stratum that is always uninfected, or SP0 = ϖ(0), which results in P (Ỹ =

1 ∣ Z = z, SP0 = ϖ(0),A = k) = 1 − spY for all z, k. The first row of the matrix PNz(Ỹ ∣

Z,SP0 ,A = k) corresponds to Ỹ = 1. Then

P (Y = 1 ∣ Z = z, SP0 = u,A = k) = PNz(Ỹ ∣ Z,SP0 ,A = k)z,j − PNz(Ỹ ∣ Z,SP0 ,A = k)1,1
rY

where j =ϖ−1Nz
(u) + 1, so VEu

I,jl(k) is identifiable.

Proof. Proof of Corollary 3.4

By the conditions set forth in Corollary 3.4 we have that

P (S̃ = 1 (i ≤ Nz) ,Ã = k ∣ Z = zi−Nz1(i>Nz),R = r) =
2Nz

∑
j=1

PNz(S̃ ∣ Z,SP0)i,jPNz(SP0 ∣ R)Tr,jPNz(Ã ∣ SP0)k,j.

This decomposition holds because of our nondifferential misclassification assumption, namely

Ã ⊥⊥ SP0 , S̃,R,Z ∣ A, which allows for the following complete characterization of Ã ∣ SP0 :

P (Ã = k ∣ SP0 = u) =
Nz

∑
ℓ=1

P (Ã = k ∣ A = ℓ)P (A = ℓ ∣ SP0 = u).
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Recall that snS, spS lie in the same half interval of [0,1], so by the same logic as

Section E, the distributions P (S̃ = 1 ∣ Z = z, SP0 = u), P (Ã = k ∣ SP0 = u), P (SP0 = u ∣ R = r)

are identifiable. Define the matrix P (Ỹ ∣ Z,R, Ã = k) with dimensionsNz×Nr with elements

P (Ỹ = y ∣ R = r,Z = z, Ã = k)

P (Ỹ ∣ Z,R, Ã = k)i,r = P (Ỹ = 1 ∣ Z = zi,R = r, Ã = k).

Let the matrix PNz(Ỹ ∣ Z,SP0 , Ã = k) be defined in the same way as Equation (31). Then

P (Ỹ = 1 ∣ Z = zi, Ã = k,R = r) =
2Nz

∑
j=1

PNz(Ỹ ∣ Z,SP0 , Ã = k)i,j (34)

× PNz(SP0 ∣ R)j,rPNz(Ã = k ∣ SP0)j,j/P (Ã = k ∣ R = r)

(35)

which can be represented as matrix multiplication, recalling the definitions of matrices

PNz(Ã = k ∣ SP0), and P (Ã = k ∣ R):

P (Ỹ ∣ Z,R, Ã = k) = PNz(Ỹ ∣ Z,SP0 , Ã = k)PNz(Ã = k ∣ SP0)PNz(SP0 ∣ R)P (Ã = k ∣ R)−1

(36)

Given our assumption that PNz(SP0 ∣ R) is full row rank,PNz(SP0 ∣ R)PNz(SP0 ∣ R)+ = I2Nz .

Without loss of generality we assume that P (Ã = k ∣ R = r) > 0∀k, r, which is estimable

from observed data and P (Ã = k ∣ SP0 = u) > 0∀k, u, which is identified via the . Then:

P (Ỹ ∣ Z,R, Ã = k)P (Ã = k ∣ R)PNz(SP0 ∣ R)+PNz(Ã = k ∣ SP0)−1 = PNz(Ỹ ∣ Z, Ã = k,SP0)

(37)

It then follows the definition of PNz(Ỹ ∣ Z,SP0 , Ã = k) that spY is identifiable, as are

the parameters rY P (Y = 1 ∣ Z = zj, SP0 = ϖNz(j − 1), Ã = k) for all j ∈ {1, . . . ,2Nz} and

k ∈ {1, . . . ,Na}.
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Let any allowable post-infection outcome vaccine efficacy estimand, necessarily where

uj ul = 1, be defined as

VEu
I,jl = 1 −

E [Y (zj) ∣ SP0 = u]
E [Y (zl) ∣ SP0 = u] .

By Assumptions 2.1 to 2.2 P (Y = 1 ∣ Z = z, SP0 = u, Ã = k) = P (Y (z) = 1 ∣ SP0 = u, Ã = k)

and E [Y (z) ∣ SP0 = u, Ã = k] = P (Y (z) = 1 ∣ SP0 = u, Ã = k) for all z ∈ {z1, . . . , zNz}. Note

that spY = 1 − PNz(Ỹ ∣ Z,SP0 , Ã = k)1,1 by our definition of PNz(Ỹ ∣ Z,SP0 , Ã = k) in

Equation (31). Then

P (Y = 1 ∣ Z = z, SP0 = u, Ã = k) = PNz(Ỹ ∣ Z,SP0 , Ã = k)z,j − PNz(Ỹ ∣ Z,SP0 , Ã = k)1,1
rY

where j =ϖ−1Nz
(u) + 1. Then

VEu
I,jl = 1 −

∑k (PNz(Ỹ ∣ Z,SP0 , Ã = k)z,j − PNz(Ỹ ∣ Z,SP0 , Ã = k)1,1)P (Ã = k ∣ SP0 = u)
∑k (PNz(Ỹ ∣ Z,SP0 , Ã = k)z,l − PNz(Ỹ ∣ Z,SP0 , Ã = k)1,1)P (Ã = k ∣ SP0 = u)

.

Lemma E.1 (Identifiability of counterfactual post-infection outcome expectations). Sup-

pose P (SP0
i = u ∣ R = r) is known

F Kruskal rank properties

In the section that follows, we use properties and several theorems and lemmas that are

proven in Kruskal (1977). Where appropriate we will indicate on which pages the proofs

of the theorems and lemmas can be found.

Lemma F.1 (Rank lemma). Let

HAB(n) = min
card(A′)=n

{rank(A′) + rank(B′)} − n
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for an integer n where A′ is an n-column subset of the matrix A and B′ is the same

column-index subset of a matrix B. For any diagonal matrix D ∈ Rn×n with rank δ,

rank(ADBT ) ≥HAB(δ).

See proof on p. 121 in Kruskal (1977).

F.1 Kruskal’s triple-product decomposition uniqueness theorem

Theorem F.2 (Kruskal triple product decomposition uniqueness). Let matrices A,B,C be

defined as in Definition 2.5, with respective ranks rA, rB, rC, and let array L also be defined

as in Definition 2.5. Suppose that kA ≤ rA, kB ≤ rB, and kC ≤ rC. Then if

rA + rB + rC − (2M + 2) ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min(rA − kA, rB − kB)

min(rA − kA, rC − kC)
,

min(kA, kB) + rC ≥M + 2, and min(kA, kC) + rB ≥M + 2 the decomposition L = [A,B,C]

is unique up to column permutation matrix P and column scaling Λ,G,N such that ΛGN

is the identity matrix. In other words, L can be represented as the triple product of any

three matrices [Ã, B̃, C̃] such that [Ã = APΛ, B̃ = BPG, C̃ = CPN]. See proof in Kruskal

(1977) on page 126.

F.2 Corollary to Theorem F.2

Corollary F.3 (Uniqueness with column and row sum conditions). Suppose B has rows

that sum to 1 and C has columns that sum to 1, or B1R×1 = 1J×1, and 11×KC = 11×R. If

the rank conditions in Theorem F.2 on A,B,C also hold, and C is full column rank then

[A,B,C] is the unique triple product decomposition of array L up to a common column

permutation.
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Proof. Suppose that L = [A,B,C] and that [Ā, B̄, C̄] is another decomposition of L, where

B̄, C̄ satisfy the respective row- and column-sum constraints. Let rB̄, rC̄ be the ranks of

B̄ and C̄ respectively. Definition 2.5 implies that Adiag(xC)BT = Ādiag(xC̄)B̄T for all

x ∈ R1×I . If for any y ∈ R1×K such that yC̄ = 0 Ô⇒ yC = 0 then col(C) ⊂ col(C̄),

null(C) ⊃ null(C̄), and rC ≤ rC̄ . If yC̄ = 0 then

Ādiag(yC̄)B̄T = 0 Ô⇒ Adiag(yC)BT = 0

Recall the definition of HAB(n) from Lemma F.1. Kruskal (1977) shows that the condition

on the ranks and Kruskal ranks above imply the following inequalities (proof omitted):

kA ≥max(R − rB + 2,R − rC + 2), (38)

kB ≥ R − rC + 2, (39)

kC ≥ R − rB + 2, (40)

HAB(n) ≥ R − rC + 2 if n ≥ R − rC + 2 (41)

HAC(n) ≥ R − rB + 2 if n ≥ R − rB + 2 (42)

HBC(n) ≥ 1 if n ≥ 1 (43)

The inequality eq. (41) implies that when HAB(n) < R − rC + 2 then n < R − rC + 2. When

n < R − rC + 2, the inequalities eqs. (38) to (40) and the definition of HAB(n) imply that

HAB(n) = n. Then

0 = rank(Adiag(yC)BT )

≥HAB(rank(diag(yC))) ≥ 0,

where the second to last inequality comes from Lemma F.1 and the last inequality comes

from the definition of HAB(n). This implies yC = 0. Let the function w(y) for a generic

vector y return the number of nonzero entries in the vector y. Let v be any vector such
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that w(vC̄) ≤ R − K̄0 + 1. Then we’ll show that w(vC) ≤ w(vC̄).

R − rC + 1 ≥ R − K̄0 + 1 ≥ w(vC̄) = rank(diag(vC̄) (44)

≥ rank(Adiag(yC̄)B̄T ) = rank(Adiag(yC)BT ) (45)

≥HAB(rank(diag(vC)) =HAB(w(vC)). (46)

The final line implies that HAB(w(vC)) = w(vC), which shows that w(vC̄) ≥ w(vC) when

R − K̄0 + 1 ≥ w(vC̄).

Given this condition, Kruskal’s permutation lemma (proved on page 134 of Kruskal

(1977)) shows that for any matrices C and C̄ that satisfy the inequality, C̄ = CPCN where

PC is a permutation matrix and N is a diagonal nonsingular scaling matrix. If we have

the stronger condition that every two columns of C are linearly independent then PC and

N are unique. Our matrices satisfy these conditions, so we have that C̄ = CPCN , and a

similar argument can be used to show B̄ = BPBM

Given that we also have the condition that 11×KC = 11×R and 11×KC̄ = 11×R, then this

implies that C̄ = CPC because 11×KC̄ = 11×KCPCN = 11×RN which only equals 11×R if

N = IR×R.

Furthermore, if rB = R, the equation Bν = 1J×1 has a unique solution in ν ∈ RR×1,

namely ν = 1R×1. This implies that M is the identity matrix, as the condition B̄1R×1 = 1J×1

results in:

1J×1 = B̄1R×1 (47)

= BPBM1R×1 (48)

Ô⇒ PBM1R×1 = 1R×1. (49)

Given that M is a nonsingular diagonal matrix and PB is a permutation matrix, M must

be the identity to solve the equation PBM1R×1 = 1R×1.

67



We now have C̄ = CPC and B̄ = BPB. We can apply Kruskal’s permutation matrix

proof from pages 129-130 in Kruskal (1977) to show that PC = PB = P . The following two

identities hold for any diagonal scaling matrices M,N , any permutation matrix P , and any

vector v:

Mdiag(v)N = diag(vMN) (50)

Pdiag(v)P T = diag(vP T ). (51)

Given Equations (50) to (51) and the condition that L = [A,B,C] = [Ā, B̄, C̄], then, for all

vectors v ∈ R1×J ,

Bdiag(vA)CT = B̄diag(vĀ)C̄T (52)

= BPdiag(vĀ)P TCT (53)

= Bdiag(vĀP T )CT . (54)

The equality Bdiag(vA)CT = Bdiag(vĀP T )CT implies

Bdiag(v(A − ĀP T ))CT = 0 (55)

for all v. Furthermore,

0 = rank(Bdiag(v(A − ĀP T ))CT ) (56)

≥HBC(rank(diag(v(A − ĀP T ))) ≥ 0. (57)

The last line follows from Lemma F.1. Then using the implication from eq. (43) that if

HBC(n) < 1 Ô⇒ n = 0, rank(diag(v(A − ĀP T )) = 0 or v(A − ĀP T ) = 0 for all v. This

further implies that

A = ĀP T

or

Ā = AP.
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G Supporting lemmas and definitions from other work

Lemma G.1 (Block rank lemmas Tian (2004)). Let A ∈ Rm×n,B ∈ Rm×k,C ∈ Rl×n.

rank

⎛
⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A B

C 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠
= rank(B) + rank(C) + rank((I −BB+)A(I −C+C))

If range(B) ⊆ range(A) and range(CT ) ⊆ range(AT )

rank

⎛
⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A B

C D

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠
= rank(A) + rank(D −CA+B)

Lemma G.2 (Block rank lemma extension). Let A ∈ Rm×n,B ∈ Rm×k,C ∈ Rl×n. If

range(CT ) ⊆ range(AT )

rank

⎛
⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A A

C D

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠
= rank(A) + rank(D −C)

Proof. Given that range(A) ⊆ range(A), we can apply the second block rank lemma from

Lemma G.1 with B = A.

rank

⎛
⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A A

C D

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠
= rank(A) + rank(D −CA+A).

By supposition, range(CT ) ⊆ range(AT ) and A+A is the projection matrix onto the column

space of AT . Then CA+A = C, and the statement follows.

H Details behind numerical examples

We have three simulation scenarios where we vary the sample size to determine the power:

a two-arm trial to determine vaccine efficacy against severe symptoms, a three-arm trial
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to determine relative vaccine efficacy against severe symptoms, and a two-arm trial to

determine vaccine efficacy against transmission. All trials are designed such that the as-

sumptions of Theorem 3.3 are satisfied, so the three-arm trial includes 16 study sites, and

a categorical covariate with 7 levels, and both two-arm trials include 8 study sites, and a

categorical covariate with 3 levels. Within each scenario we suppose that A, the categorical

covariate, to be measured perfectly. In addition, we assume a 3-level, pretreatment cate-

gorical covariate has been measured for each participant. We simulate from the parametric

model defined in Section 3.2, which requires that we specify µr
u, or the log-odds of belonging

to stratum u relative to base stratum u0 for each study site r. Let the ordered collection

of log-odds of being in stratum u relative to stratum u2Nz for the reference covariate level

x = 1 be µr = (µr
u1
, µr

u2
, . . . , µr

u
2Nz−1

,0).

Let softmax be the function from v ∈ RL to the L + 1-dimensional probability simplex,

defined elementwise for the ith element as:

softmax(v)i =
evi

∑L
l=1 e

vr
l

and let softmax−1 be the inverse function from θ ∈ the L + 1-dimensional simplex to RL,

where the ith element, i < L + 1 is defined as

softmax(θ)−1i = log(θi) − log(θL+1)

Let θr,xu = P (SP0 = u ∣ R = r,X = x), and let θr,x be the ordered vector (θr,xu1 , θ
r,x
u1 , . . . , θ

r,x
u
2Nz
)

. For the 2-arm trials, the population principal strata proportions are as follows:

θr,1
iid∼ Dirichlet((78,10,2,10))∀r

while for the 3-arm trials, the proportions are

θr,1
iid∼ Dirichlet((70,13,1,1,1,1,1,12))∀r
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Assuming equal proportions of participants in each treatment group, these parameter

settings equate to a cumulative true incidence of roughly 0.16 and 0.19, respectively. Recall

from Section 3.2 that ηx ∈ R2Nz , so ηxu is the change in log-odds of belonging to principal

stratum u vs. u0 relative to x = 1. We set ηx
2Nz
= 0 for identifiability. Then let µr

u =

softmax−1(θr,1),

θr,x = softmax (µr
u + ηx) ,

where for all x > 1

ηxi
iid∼ Normal(0,1), i < 2Nz , ηx2Nz = 0.

Let the Na-vector au,x be defined elementwise as au,xk where au,xk = P (A = k ∣ SP0 = u,X =

x).

au,1
iid∼ Dirichlet(41Na)∀u,

and νu = softmax−1(au,1). Then recall that γx ∈ RNa such that γx
k is the change in log-odds

of A = k relative to A = k0, and that γx
Na
= 0 for identifiability. Then

au,x = softmax (νu + γx) ,

and for all x > 1

γx
i

iid∼ Normal(0,1), i < Na, γ
x
Na
= 0.

For data generating process that does not adhere to the Covariate homogeneity assumption,

au,x,r is generated as follows

au,x,r = softmax (νu + γx + εr)

εrk ∼ Normal(0, σ2
ε)∀r > 1, k < Na

εrNa
= 0∀r

ε1k = 0∀k

(58)
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We set σε = {0.5,1,2} for our simulation study scenarios.

Finally, recall that

log
P (Y (zj) = 1 ∣ SP0 = u,A = k,X = x)
P (Y (zj) = 0 ∣ SP0 = u,A = k,X = x) = α

u
j + δuj,k + ωx

j ,

where ωx
j is the change in log-odds of Y (zj) = 1, all else being equal, compared to x = 1.

In all of our simulations, ωx
j = (x− 1) log(1.1) for all j. For the 2-arm trial example, we let

α
(1,1)
1 = log(0.3/0.7), α(1,1)2 = log(0.3/0.7) + log(0.4), and δ

(1,1)
1,k = (k − 1) log(0.925), δ(1,1)2,k =

(k − 1) log(0.825). Further, we let α
(1,0)
1 = log(0.15/0.85), α(0,1)2 = log(0.2/0.8), and δ

(1,0)
1,k =

(k − 1) log(0.925), and δ
(0,1)
2,k = 0

For the 3-arm trial example, we let α
(1,1,1)
1 = log(0.3/0.7), α(1,1,1)2 = log(0.3/0.7), α(1,1,1)3 =

log(0.3/0.7)+log(0.4), and δ
(1,1,1)
j,k = (k−1) log(0.925) for j = 1,2,3. Further, we let α(1,0,1)1 =

log(0.2/0.8), α(1,0,1)3 = log(0.1/0.9),α(1,1,0)1 = log(0.3/0.7), α(1,1,0)2 = log(0.15/0.85),α(0,1,1)2 =

log(0.25/0.75), α(0,1,1)3 = log(0.08/0.92), α(0,0,1)3 = log(0.25/0.75), α(0,1,0)2 = log(0.25/0.75),

α
(1,0,0)
1 = log(0.1/0.9) and δuj,k = 0 for all k, u ∈ {(1,0,0), (0,1,0), (1,1,0), (0,0,1), (1,0,1), (0,1,1)},

and all allowable j

In the 2- and 3-arm trial examples that pertain to inferring vaccine efficacy against

severe symptoms, we set snS = 0.8, spS = 0.99 which reflects the sensitivity and specificity of

a typical PCR collected via nasopharyngeal swab (Kissler et al. 2021), and snY = 0.99, spS =

0.9 to reflect the fact that most severe illness caused by the pathogen of interest will be

reported, but that there are many severe illness episodes that are reported that may be

caused by other pathogens. These lead to a true rate of severe illness of 0.04 but a rate of

reported severe illness of 0.14. For comparison Monto et al. (2009) symptom reporting data

shows that 10% of participants reported at least one severe symptom, but the cumulative

incidence was 0.07.

For each hypothetical participant in a study site R = r in our study we draw data in
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the following manner

Zi
iid∼ Categorical( 1

Nz

1Nz)

Xi
iid∼ Categorical(1

3
13)

SP0
i ∣ R = r,X = x

iid∼ Categorical(θr,x)

Ai ∣ SP0 = u,X = x iid∼ Categorical(au,x)

Yi ∣ SP0 = u,A = k,X = x,Z = j iid∼ Bernoulli(inv logit(αu
j + δuj,k + ωx))

Ỹi ∣ Y = y iid∼ Bernoulli(ysnY + (1 − y)(1 − spY ))

S̃i ∣ SP0 = u,Z = j iid∼ Bernoulli(ujsnS + (1 − uj)(1 − spS))

Ãi ∣ A = a iid∼ Categorical(paNa
)

(59)

and we do this for all sites R ∈ {1, . . . ,Nr}.

We fit the model defined in Equation (11). Recall

Ai ∣ SP0
i = u,Xi = x,Ri = r ∼ Categorical(πu,x,r) (60)

SP0
i ∣ Ri = r,Xi = x ∼ Categorical(ρr,x) (61)

Yi(zj) ∣ SP0
i = u,Ai = k,Xi = x ∼ Bernoulli(βu,x

j,k ) (62)

where we define πu,x,r as in Equation (12):

πu,x,r = softmax (νu + γx + γu,x + ϵr)

ϵrk ∼ Normal(0, σ2
ϵ )∀r > 1, k < Na

γu,x
k ∼ Normal(0, σ2

γ)∀u,x > 1, k < Na

σϵ ∼ StudentT+(3,0,0.1), σγ ∼ StudentT+(3,0,0.1)

ϵrNa
= 0∀r, ϵ1k = 0∀k, γx

Na
= 0∀x, γ1

k = 0∀k, γu,x
Na
= 0∀u,x, γu,1

k = 0, γ
1,x
k = 0∀k

(63)
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We define a hierarchical model for βu,x
j,k as:

logitβu,x
j,k = αu

j + ϵu,xj,k

ϵu,xj,k ∼ Normal(0, τ 2ϵ )

τϵ ∼ Normal+(0,52)

αu
j ∼ Normal(0,1.72)

(64)

We use the following priors:

snS ∼ Beta(0.5,1,4,2)

spS ∼ Beta(0.5,1,10,2)

snY ∼ Beta(0.5,1,1,1)

spY ∼ Beta(0.5,1,4,2)

ρr,x
iid∼ Dirichlet((7,1,1,1)T ), ∀r, x

νu
k ∼ Normal(0,1.32),∀u,1 ≤ k < Na

γx
k ∼ Normal(0,1.32),∀x > 1,1 ≤ k < Na

(65)

where Beta(0.5,1,4,2) is the shifted, scaled Beta distribution in which the first two argu-

ments define the support of the distribution, and the second two parameters are shape pa-

rameters. For example, for snS this corresponds to χ ∼ Beta(4,2) and snS = (1−0.5)χ+0.5.

When Nz = 3, the prior for ρr,x changes to:

ρr,x
iid∼ Dirichlet((2,1/31T

2Nz−1)T ), ∀r, x

We use Stan for inference (Team 2021) using the cmdstanr package (Gabry & Češnovar

2022) in R (R Core Team 2022). Four MCMC chains were run for each model on each sce-

nario. All models for the two-arm trials were run for 3,000 warmup and 3,000 post-warmup

iterations; nearly all R̂ statistics (Gelman et al. 2013) were below 1.01, as recommended by
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Vehtari et al. (2020). The maximum R̂ recorded across all two-arm trials was 1.04. For the

three-arm trials, all models were run for 3,000 warmup and 12,000 post-warmup iterations.

Nearly all R̂ statistics were below 1.01 with a maximum R̂ recorded across all three-arm

trials was 1.02.

I Asymptotic variance derivations

Lemma I.1 (Affine transformation of vectorized normal). Suppose X ∈ Rn×p, vec(X) ∼

N(0,Σ) for a positive definite matrix Σ. Given a matrix D ∈ Rk×n with rankD = k and a

matrix C ∈ Rp×m with rankC = m, vec(DXC) ∼ N(0, (CT ⊗D)Σ(C ⊗DT )) where (CT ⊗

D)Σ(C ⊗DT ) is positive definite.

Proof. vec(DXC) = (CT ⊗D)vec(X). Affine transformations of multivariate normal vec-

tors, Y = BZ, where Z ∼ N(0,Σ) and B is a full-row rank matrix leads to Y ∼ N(0,BΣBT ),

BΣBT positive definite. Then

vec(DXC) ∼ N(0, (CT ⊗D)Σ(C ⊗DT )).

The rank of CT ⊗D = rankCT rankD = mk. The dimensions of CT ⊗D are mk × np, so

CT ⊗D is full-row rank.

Lemma I.2 (Limiting distribution of least squares estimator). Let b = Xω where X is

full column rank with elements in R and ω /= 0. Given estimators X̂, b̂ the least-squares

estimator for ω, ω̂, is (X̂T X̂)−1 X̂T b̂. Let X+ = (XTX)−1XT ,vec (
√
NDX(X̂ −X))

d→

Normal(0,Σ), and
√
NDb(b̂−b)

d→ Normal(0,C) where DX ,Db are positive definite diagonal

scaling matrices. Then

√
N(ω̂ − ω) d→ Normal(0, (ωT ⊗X+D−1X )Σ(ω ⊗ (X+D−1X )T ) +X+D−1b C(X+D−1b )T ).
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Proof. ω(X, b) = (XTX)−1XT b, so we can linearize this function in X and b, following the

logic in Bonhomme et al. (2016):

ω(X + dX, b + db) = ω(X, b) + d (XTX)−1XT b + (XTX)−1 (dXT )b + (XTX)−1XTdb

For a square invertible matrix Ω, dΩ−1 = −Ω−1 dΩΩ−1 so

d (XTX)−1 = − (XTX)−1 d(XTX) (XTX)−1 (66)

= − (XTX)−1 (dXTX +XTdX) (XTX)−1 (67)

Then,

ω(X + dX, b + db) =ω(X, b) − (XTX)−1 (dXTX +XTdX) (XTX)−1XT b

+ (XTX)−1 (dXT )b + (XTX)−1XTdb + o(1)

= ω(X, b) + (XTX)−1 dXT (I −XX+)b +X+dXX+b

+X+db + o(1)

Note that (I −XX+)b = (I −XX+)Xω = 0 and D−1X DX =D−1b Db = I So

√
N(ω̂ − ω) =X+D−1X

√
NDX(X̂ −X)ω +X+D−1b

√
NDb(b̂ − b) + op(1) (68)

By assumption,

√
NDb(b̂ − b)

d→ N(0,C), vec (
√
NDX(X̂ −X))

d→ Normal(0,Σ),

so

vec (X+D−1X
√
ND(X̂ −X)ω) d→ Normal(0, (ωT ⊗X+D−1X )Σ(ω ⊗ (X+D−1X )T )) (69)

X+D−1b
√
ND(b̂ − b) d→ N(0,X+D−1b C(X+D−1b )T ) (70)

given that vec (X+D−1X
√
NDX(X̂ −X)ω) =X+D−1X

√
NDX(X̂ −X)ω, we get

√
N(ω̂ − ω) d→ Normal(0, (ωT ⊗X+D−1X )Σ(ω ⊗ (X+D−1X )T ) +X+D−1b C(X+D−1b )T ) (71)
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I.0.1 Interpretation for VE modeling

When considering Lemma I.2 in the context of the two-arm model presented in the paper,

the vector ω is the vector

(spY , β
(0,1)
z , β

(1,0)
z , β

(1,1)
z )

, the matrix X is P x
Nz
(SP0 ∣ R), and the matrix DX in Lemma I.2 is the square-root

of the proportion of individuals assigned to a study site Ri = r. Db is the proportion

of people assigned to a study site Ri = r and Zi = z. If the design of the study calls

for equal proportions of individuals spread out between study sites and equal numbers of

people assigned to treatment and control for each study site, then Db = (2Nr)−
1
2 INr and

DX = (Nr)−
1
2 INr . This simplifies the expression above to:

√
N(ω̂ − ω) d→ Normal(0,Nr ((ωT ⊗X+)Σ(ω ⊗ (X+)T ) + 2X+C(X+)T )) (72)

This highlights that variance increases as a function of Nr due to distributing people over

more sites. This effect is in tension with the Moore-Penrose inverse X+ because if we take

the view that study sites are drawn from a superpopulation of study sites with a generating

distribution for proportions of principal strata, the more study sites we have, the better

estimate of the inverse of the second moment matrix XTX.
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